

REPORT TO GOOD TIME HOLDINGS

ON PRELIMINARY (STAGE 1) SITE INVESTIGATION (PSI)

FOR PROPOSED MIXED USE DEVELOPMENT

AT 277 THE GRAND PARADE, RAMSGATE, NSW

Date: 9 January 2024 Ref: E34871PTrptRev1

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Katrina Taylor Associate | Environmental Scientist

Report reviewed by:

Brendan Page Principal | Environmental Scientist CEnvP SC

For and on behalf of JKE

PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Date	
28 June 2022	
9 January 2024	
ev1 Revision – Client requested update to proposed development description	

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Good Time Holdings NSW ('the client'), care of Bronxx Pty Limited, commissioned JK Environments (JKE) to undertake a Preliminary (Stage 1) Site Investigation (PSI) for the proposed mixed use development at 277 The Grand Parade, Ramsgate, NSW ('the site'). The purpose of the investigation is to make a preliminary assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the lodgement of a Development Application (DA) for the proposed mixed use development, with regards to State Environmental Planning Policy (Resilience and Hazards) 2021 (formerly known as SEPP55).

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 34871PHrpt). This report should be read in conjunction with the JKG report.

It is understood that following demolition of the existing Coles supermarket building, the proposed development includes construction of a six storey building underlain by three basement levels. The lowest basement level (Basement 3) will be constructed at RL-6.4m requiring excavation to a depth of approximately 9.8m plus the slab thickness, and will extend to the site boundaries, as shown on the attached Figure 2. Six lifts are also proposed. Selected development plans issued to JKE are attached in the appendices.

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. Secondary aims were to provide a preliminary waste classification for disposal of waste soil to be generated during the proposed development works, and to assess the potential for acid sulfate soil (ASS) occurrence and the need for an ASS management plan (ASSMP). The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Provide a preliminary assessment of the occurrence of ASS and assess the need for an ASSMP;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The site history information and site walkover inspection identified the following AEC: imported fill material; historic onsite mechanics workshop; use of pesticides; hazardous building materials; and an off-site service station (located in close proximity to site).

Soil samples were obtained from seven boreholes and groundwater sampling was undertaken from two monitoring wells installed at the site. The boreholes encountered fill materials to depths of approximately 0.3m below ground level

(BGL) to 1.5mBGL, underlain by sandy marine soils. The fill contained inclusions of igneous gravel, silt, concrete and terracotta fragments and ash. Asbestos and nickel were identified in soil at concentrations that exceeded the human health and ecological SAC respectively. Heavy metals (arsenic, copper and zinc) were also identified in groundwater above the ecological (marine) SAC.

The PSI has not identified contamination that would preclude the proposed development/use of the site. However, a Detailed Site Investigation (DSI) is required to address the data gaps identified in Section 10.4, characterise the risks and establish whether remediation is necessary (and inform the preparation of a remediation action plan (RAP) where required). We recommend the following:

- 1. Prepare a Sampling, Analysis and Quality Plan (SAQP) for the DSI;
- 2. Undertake a DSI in accordance with the SAQP; and
- 3. Where required (i.e. if triggered following the DSI risk assessment), develop and implement a RAP. Any requirements documented in a RAP are to be implemented and the site is to be remediated and validated.

The natural soil below a depth of 5mBGL is considered to be potential acid sulfate soils (PASS). An ASSMP should be prepared once specific details of the development are known, including final depths of disturbance etc. The need for additional sampling and analysis for ASS characteristics should be assessed as the design progresses.

At this stage, JKE consider that there is currently no requirement to report any site contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015). This will be further evaluated as part of the DSI.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTRO	DUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	SCOPE OF WORK	2
2	SITE IN	FORMATION	3
	2.1	SITE IDENTIFICATION	3
	2.2	SITE LOCATION AND REGIONAL SETTING	3
	2.3	TOPOGRAPHY	3
	2.4	SITE INSPECTION	3
	2.5	SURROUNDING LAND USE	5
	2.6	UNDERGROUND SERVICES	5
	2.7	SECTION 10.7 PLANNING CERTIFICATE	5
3	GEOLO	GY AND HYDROGEOLOGY	6
	3.1	REGIONAL GEOLOGY	6
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	6
	3.3	HYDROGEOLOGY	6
	3.4	RECEIVING WATER BODIES	7
4	SITE HI	STORY INFORMATION	8
	4.1	REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS	8
	4.2	REVIEW OF HISTORICAL LAND TITLE RECORDS	9
	4.3	NSW EPA AND DEPARTMENT OF DEFENCE RECORDS	10
	4.4	HISTORICAL BUSINESS DIRECTORY AND ADDITIONAL LOTSEARCH INFORMATION	11
	4.5	SUMMARY OF SITE HISTORY INFORMATION	12
	4.6	Integrity of Site History Information	12
5	CONCE	PTUAL SITE MODEL	13
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	13
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	14
6	SAMPL	ING, ANALYSIS AND QUALITY PLAN	16
	6.1	DATA QUALITY OBJECTIVES (DQO)	16
	6.2	Soil Sampling Plan and Methodology	18
	6.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	20
7	SITE AS	SESSMENT CRITERIA (SAC)	22
	7.1	Soil	22
	7.2	GROUNDWATER	24
8	RESULT	ſS	26
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	26
	8.2	SUBSURFACE CONDITIONS	26
	8.3	FIELD SCREENING	26
	8.4	SOIL LABORATORY RESULTS	27
	8.5	GROUNDWATER LABORATORY RESULTS	31

9	WASTI	E CLASSIFICATION ASSESSMENT	33
	9.1	PRELIMINARY WASTE CLASSIFICATION OF FILL	33
	9.2	PRELIMINARY CLASSIFICATION OF NATURAL SOIL	33
10	DISCU	SSION	34
	10.1	CONTAMINATION SOURCES/AEC AND POTENTIAL FOR SITE CONTAMINATION	34
	10.2	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	34
	10.3	DECISION STATEMENTS	36
	10.4	Data Gaps	36
11	CONCLUSIONS AND RECOMMENDATIONS		38
12	LIMITATIONS		39

List of Tables

Table 2-1: Site Identification	3
Table 4-1: Summary of Historical Aerial Photographs	8
Table 4-2: NSW EPA and Department of Defence Records	10
Table 4-3: Historical Business Directory and other Records	11
Table 4-4: Summary of Historical Land Uses / Activities	12
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	13
Table 5-2: CSM	14
Table 6-1: Soil Sampling Plan and Methodology	18
Table 6-2: Groundwater Sampling Plan and Methodology	20
Table 6-3: Laboratory Details	21
Table 7-1: Details for Asbestos SAC	22
Table 7-2: Waste Categories	23
Table 7-3: ASS Action Criteria	24
Table 8-1: Summary of Subsurface Conditions	26
Table 8-2: Summary of Field Screening	26
Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	27
Table 8-4: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	29
Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria	30
Table 8-6: Summary of ASS Results	30
Table 8-7: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	31
Table 10-1: Data Gap Assessment	36

Attachments

Appendix A: Report Figures Appendix B: Site Information and Site History Appendix C: Laboratory Results Summary Tables Appendix D: Borehole Logs Appendix E: Laboratory Report(s) & COC Documents Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents Appendix I: Guidelines and Reference Documents

Abbreviations

	A E / E A
Asbestos Fines/Fibrous Asbestos	AF/FA ABC
Ambient Background Concentrations Added Contaminant Limits	ACL
Asbestos Containing Material	ACL
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed (Stage 2) Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environment Protection Authority	EPA
Health Investigation Level	HILs
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM OCP
Organochlorine Pesticides	
Organophosphate Pesticides Polycyclic Aromatic Hydrocarbons	OPP PAH
Polychlorinated Biphenyls	РСВ
Per-and Polyfluoroalkyl Substances	PCB
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
State Environmental Planning Policy	SEPP
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Standard Penetration Test	SPT
Standing Water Level	SWL
-	

%w/w

Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS
Units	
Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	
Millilitres	
Milliequivalents	meq
micro Siemens per Centimetre	μS/cm
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%

Percentage
Percentage weight for weight

JKEnvironments

1 INTRODUCTION

Good Time Holdings NSW ('the client'), care of Bronxx Pty Limited, commissioned JK Environments (JKE) to undertake a Preliminary (Stage 1) Site Investigation (PSI) for the proposed mixed use development at 277 The Grand Parade, Ramsgate, NSW ('the site'). The purpose of the investigation is to make a preliminary assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2.

This report has been prepared to support the lodgement of a Development Application (DA) for the proposed mixed use development, with regards to State Environmental Planning Policy (Resilience and Hazards) 2021¹ (formerly known as SEPP55).

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 34871PHrpt)². This report should be read in conjunction with the JKG report.

1.1 Proposed Development Details

It is understood that following demolition of the existing Coles supermarket building, the proposed development includes construction of a six-storey building underlain by three basement levels. The lowest basement level (Basement 3) will be constructed at RL-6.4m requiring excavation to a depth of approximately 9.8m plus the slab thickness, and will extend to the site boundaries, as shown on the attached Figure 2. Six lifts are also proposed.

Selected development plans issued to JKE are attached in the appendices.

1.2 Aims and Objectives

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. Secondary aims were to provide a preliminary waste classification for disposal of waste soil to be generated during the proposed development works, and to assess the potential for acid sulfate soil (ASS) occurrence and the need for an ASS management plan (ASSMP). The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

² JKG, (2022). Report to Good Times Holdings NSW on Preliminary Geotechnical Investigation for Proposed Mixed Use Development at 277 The Grand Parade, Ramsgate, NSW. (referred to as JKG report)

- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Provide a preliminary assessment of the occurrence of ASS and assess the need for an ASSMP;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP55661PTrev1) of 1 March 2022 and written acceptance from Bronxx on behalf of the client of 8 March 2022. The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)³, National Acid Sulfate Soil Guidance (2018) documents, the Acid Sulfate Soil Management Advisory Committee (ASSMAC) Acid Sulfate Soil Manual (1998)⁴ other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁵ and SEPP Resilience and Hazards 2021. A list of reference documents/guidelines is included in the appendices.

³ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

⁴ Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual (ASS Manual 1998)

⁵ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 Site Identification

Table 2-1: Site Identification		
Current Site Owner (certificate of title):	Moside Pty Limited	
Site Address:	277 The Grand Parade, Ramsgate, NSW	
Lot & Deposited Plan:Lots 6 to 11 in DP11037, Lot 8 Section D in DP10747, and Lot 55		
Current Land Use:	Commercial (supermarket and associated car park)	
Proposed Land Use:	Mixed use (residential/commercial)	
Local Government Authority:	Bayside Council	
Current Zoning:	B4 – Mixed use	
Site Area (m ²) (approx.):	4,470	
Geographical Location	Latitude: -33.9863743	
(decimal degrees) (approx.):	Longitude: 151.146206	
Site Plans:	Appendix A	

2.2 Site Location and Regional Setting

The site is located in a mixed use area of Ramsgate and is bound by The Grand Parade to the east. The site is located approximately 75m to the west of Lady Robinsons Beach and Botany Bay.

2.3 Topography

The site and regional topography are relatively flat, with a very gentle slope towards Botany Bay to the east. Given the surrounding topography, parts of the site appear to have been levelled to accommodate the existing development.

2.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 2 May 2022. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of buildings was not undertaken. Selected site photographs obtained during the inspection are attached in the appendices.

A summary of the inspection findings is outlined in the following subsections:

2.4.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the site was occupied by a Coles Supermarket (in the eastern area), associate outbuildings and an on-grade carpark (in the western area).

2.4.2 Buildings, Structures and Roads

A large single storey commercial style building covered the eastern half of the site. In the central south of the site was a single storey, concrete block-constructed building and further to the west of this was a shipping container. None of the structures were internally inspected. The western half of the site comprised an asphaltic and concrete paved car park with a central section of pavers (pedestrian access).

2.4.3 Boundary Conditions, Soil Stability and Erosion

The site building formed the eastern boundary, and colourbond and brick fencing formed the southern and western boundaries. The northern boundary was unfenced and included vehicle access and egress to the carpark.

2.4.4 Presence of Drums/Chemical Storage and Waste

General waste contained in appropriate municipal receptacles was observed to be stored in the central south of the site. No other drums/chemical storage was observed during the site inspection.

2.4.5 Evidence of Cut and Fill

Fill materials (i.e. igneous gravels), was observed within garden beds and landscaped areas generally located along the north, west and south boundaries of the site.

2.4.6 Visible or Olfactory Indicators of Contamination (odours, spills etc)

No visible (e.g. spills, staining) or olfactory (i.e. odours) indicators of contamination were observed during the site inspection.

2.4.7 Drainage and Services

Onsite drainage was not observed and excess surface water flows would be expected to flow towards the north and into the regional stormwater system on Ramsgate Road.

2.4.8 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds.

2.4.9 Landscaped Areas and Visible Signs of Plant Stress

Small to medium grasses and shrubs were located in the limited areas of landscaping and garden beds to the north, west and south of the car park. No obvious signs of plant stress or dieback were observed.

2.5 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North On-grade car parking, Ramsgate Road and a Shell Service Station;
- South Low density residential properties;
- East The Grand Parade, parkland, Lady Robinsons Beach and Botany Bay beyond; and
- West commercial properties including retail outlets, cafes and medical offices.

JKE is of the opinion that the service station located approximately 60m to the north of the site is considered to be a potential (albeit, unlikely) off-site source of contamination given the regional geology and the proximity to the site.

2.6 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the investigation in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified that would be expected to act as preferential pathways for contamination migration.

2.7 Section 10.7 Planning Certificate

The section 10.7 (2 and 5) planning certificates were reviewed for the investigation. Copies of the certificates are attached in the appendices. A summary of the relevant information is outlined below:

- The land is not deemed to be: significantly contaminated; subject to a management order; subject of an approved voluntary management proposal; or subject to an on-going management order under the provisions of the CLM Act 1997;
- The land is not the subject of a Site Audit Statement (SAS);
- Clause 6.1 of the Bayside Local Environmental Plan 2021 Acid Sulfate Soils applies to the land;
- The land is not located in a conservation area and does not include an item of environmental heritage;
- The Annual Noise Exposure Forecast (ANEF) affectation of the land is less than 15. The ANEF level may restrict the development of the land due to the risk of exposure to aircraft noise; and
- The Council is aware of various information that suggests the land may be affected by the 1% annual exceedance probability flood. The Council is unaware of the accuracy of this information, although further enquiries may be made with the Council's City Services Department in relation to this.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information was reviewed for the investigation. The information was sourced from the Lotsearch report attached in the appendices. The report indicates that the majority of the site is underlain by Quaternary aged deposits of quartz sand, minor shell content, interdune (swale) silt and fine sand. The north-east corner of the site was indicated to be underlain by Quaternary aged deposits of quartz sand, with varying amounts of shell fragment.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

A review of the ASS risk map prepared by Department of Land and Water Conservation (1997)⁶ indicated that the site is located in an area classed as having a 'low probability' of ASS occurrence at depths of between 1 and 3m below the ground surface.

ASS information presented in the Lotsearch report indicated that the site is located within a Class 3 ASS risk area. Works in a Class 3 risk area that could pose an environmental risk in terms of ASS include works at depths beyond 1m below existing ground level or works by which the water table is likely to be lowered beyond 1m below existing ground level.

3.3 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There was a total of 603 registered bores within the report buffer of 2,000m. In summary:

- A bore onsite was register for general use;
- The next closest bore was registered 5m to the south-west of the site. This bore was registered for domestic purposes;
- The majority of the bores were registered for domestic purposes; and
- The drillers log information from the closest registered bores typically identified fill and/or sand soils to the maximum depth of 12.5m. Standing water levels (SWLs) in the bores ranged from 1.52mBGL to 5.49mBGL.

The information reviewed for the PSI indicates that the subsurface conditions at the site are expected to consist of high permeability (marine) soils overlying relatively deep bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds appears to be viable under these conditions based on the numerous registered bores in the vicinity of the site, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography and surrounding land features, JKE anticipate groundwater to flow towards the east.

⁶ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

3.4 Receiving Water Bodies

The closest surface water body is Botany Bay located approximately 75m to the east of the site. This is considered to be a potential receptor given the regional geology and proximity of the water body.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs

Historical aerial photographs were reviewed for the investigation. The information was sourced from the Lotsearch report. JKE has reviewed the photographs and summarised relevant information in the following table:

Year	Details
1930The photograph was of poor quality.	
	 On-site: A large structure appeared to cover a majority of the northern portion of the site, from the north-east corner. Several other smaller structures were visible in the western section of the site, with what appeared to be open areas across the majority of the southern portion of the site. Off-site: The surrounds appeared to comprise beachside foreshore area to the east and residential plots to the north, west and south of the site.
1042	On sites The site approach similar to the provision photograph with defined protographic structures
1943	On-site: The site appeared similar to the previous photograph with defined rectangular structures of different sizes (potentially swimming baths) in the southern portion of the site.
	Off-site: The surrounds appeared to have been further developed for residential land use.
1950 1955, 56	On-site: The site appeared generally similar to the previous photograph.
	Off-site: Further development of the surrounding area for low and medium residential land use was visible.
1961	On-site: The site appeared generally similar to the previous photograph.
	Off-site: The property to the immediate north of the site appeared to contain a small structure in the east (consistent with existing fuel bowsers) and a larger building in the west (consistent with existing shop/workshop) which were consistent with a service station-type use. Buildings were also visible on the foreshore to the north-east o the site (consistent with existing structures).
1965	The site and surrounding area generally appeared similar to the previous photograph.
1970	On-site: The site appeared generally similar to the previous photograph.
	Off-site: To the north-west and south-west of the site, redevelopment of some low density residential land into medium density residential land use was observed.
1978	On-site: The site appeared to have undergone complete redevelopment. A large building was now visible covering the eastern half of the site and the western half of the site appeared to be a paved car park which appeared largely consistent with the existing (2022) layout of the supermarket.
	Off-site: The properties to the immediate west of the site also appeared to have undergone complete redevelopment with larger commercial style buildings now present.
1982 1986 1991	The site and surrounding area generally appeared similar to the previous photograph.

Year	Details
1994	On-site: The site appeared generally similar to the previous photograph.
	Off-site: Development of the properties to the immediate south and south-west of the site was evident.
2000	On-site: A structure was now visible in the central south of the site (consistent with existing concrete block storage building).
	Off-site: Further expansion of the beachfront buildings to the north-east of the site was observed. Rock groynes were visible in the shallow areas of the beach and bay.
2005	The site and surrounds appeared generally similar to the previous photograph.
2011	On-site: New paving in the central southern section of the site was observed (consistent with existing 2022 pavement finishes in this section).
	Off-site: Further developed for residential plots was visible in the surrounding areas.
2016	On-site: The site appeared generally similar to the previous photograph.
	Off-site: The service station to the north and the neighbouring residential plots to the west of this all appeared to have undergone extensive redevelopment.
2022	The site and surrounds appeared generally similar to the previous photograph.

4.2 Review of Historical Land Title Records

Historical land title records were reviewed for the investigation. The record search was undertaken by InfoTrack. Copies of the title records are attached in the appendices. The title records indicate the following:

- A number of individuals, with professions listed as clerk, manufacturer, mechanic, carpenter owned the lots within the site between 1915 and 1958;
- From 1958 onwards the lots have all been owned by businesses including Pemberton investments Pty Limited, G.J.Coles & Coy Limited (Coles Supermarket), and Barkly Square Shopping Centre Pty Limited; and
- The current owner of the entire site (including all lots) is Moside Pty Limited.

A mechanic was identified as owning the north-east corner lot for a period of five years between 1915 and 1920. Given the limited period of ownership and the time that has elapsed since this period of ownership, it is considered to be unlikely that this potential site-based activity would have resulted in any residual contamination impacts. However, for completeness this site-based activity will be included as an AEC in the CSM.

Additional information sourced from Bayside Library⁷, indicates the site was utilised as the Ramsgate Baths (colloquially known as Pemberton's Baths) between 1924 and 1970. At this time the site owners were listed as Arthur Ashley Pemberton (Manufacturer) and Pemberton Investments Pty Limited. This use is consistent with the aerial photographs during this period.

⁷ Public lecture on history of Pemberton's Baths at Ramsgate | St George & Sutherland Shire Leader | St George, NSW (theleader.com.au)

4.3 NSW EPA and Department of Defence Records

A review of the NSW EPA and Department of Defence databases was undertaken for the PSI. Information from the following databases were sourced from the Lotsearch report:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁸;
- Licensed activities under the Protection of the Environment Operations Act (1997)⁹;
- Sites being investigated under the NSW EPA per-and polyfluoroalkyl substances (PFAS) investigation program;
- Sites being investigated by the Department of Defence for PFAS contamination; and
- Sites being managed by the Department of Defence for PFAS contamination.

The search included the site and surrounding areas in the report buffer. A summary of the information is provided below:

Records	On-site	Off-site
Records under Section 58 of the CLM Act 1997	None	There were three properties listed in the report buffer. Two of these were service stations, one located 60m cross-gradient to the north of the site and one located 920m upgradient to the west of the site. Given the regional geology and topography, the property to the north is considered to represent a potential off- site source of contamination (as noted in Section 2.5). The service station to the west is not considered to represent an off-site source of contamination due to the distance from site. The third property was a landfill located approximately 815m cross-gradient and to the north-west of the site. Due to the distance and position, this property is not considered to represent an off-site source of contamination.
Records under the Duty to Report Contamination under Section 60 of the CLM Act 1997	None	There was one property listed in the report buffer. This property was a (former) service station located approximately 920m to the west. This property is discussed above, and is not considered to represent an off-site source of contamination.
Licences under the POEO Act 1997	None	Former licenses were identified for several areas within the report buffer, including the application of herbicides along waterways and water-based extractive activities. However, these activities are not considered unlikely to pose a contamination risk to the site or represent and off-site source of contamination in the context of identified receptors.

Table 4-2: NSW EPA and Department of Defence Records

⁸ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.* (referred to as Duty to Report Contamination)

⁹ Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)

Records	On-site	Off-site
Records relating to the NSW EPA PFAS Investigation Program	None	The Botany Bay area and Georges River located approximately 75m to the east of the site at its closest point, is within the NSW EPA PFAS investigation program. This area is not considered to represent an off-site source of contamination that would pose an unacceptable risk to the site in the context of the identified receptors and proposed development details.
Records relating to the Department of Defence PFAS management and investigation programs	None	None

4.4 Historical Business Directory and Additional Lotsearch Information

Historical business records and other relevant information were reviewed for the investigation. The information was sourced from the Lotsearch report and summarised in the following table:

Records	On-site	Off-site
Historical dry cleaners, motor garages and service stations	None	There were two service station/motor garages listed in the report buffer between 1950-1990. These two properties were service stations, one located 60m to the north of the site and previously discussed in Table 4-3 above as a potential offsite source of contamination, and one located approximately 195m to the south of the site. Given the regional geology and topography, the property to the south is not considered to represent an off-site source of contamination.
Other historical businesses that could represent potential sources of contamination	None	None
National waste management site database	None	None
National liquid fuel facilities	None	There were two properties listed in the report buffer. One property 60m to the north of the site and one 920m to the west of the site. These have both previously been discussed in Table 4-3. The property to the north is considered to represent a potential off-site source of contamination.
Mapped heritage items	None	Various heritage items were mapped in the report buffer. These are not considered to have any relevance in the context of the PSI objectives.

Table 4-3: Historical Business Directory and other Records

Records	On-site	Off-site
Mapped ecological constraints	None	Various ecological items were mapped in the report buffer. These are not considered to have any relevance in the context of the PSI objectives.
Mapped naturally occurring asbestos	None	None

4.5 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Table 4-4: Summary of Historical Land Uses / Activities

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities
1915-1923	 Mixed use (residential and commercial), possibly including a mechanic between 1915 and 1920 in the north-east corner. 	 Mixed use (residential and commercial).
1924-1970	 Ramsgate baths; Cut and fill works to generate required levels across the site; Use of pesticides around site; and Use of hazardous building materials within site structures. 	 Mixed use (residential and commercial); and Service station operating from circa 1960, located 60m to the north.
1970-present	 Site use - Supermarket and associated car park; Demolition of baths and associated structures; Filling of the site likely to have occurred; Use of pesticides around site; and Use of hazardous building materials within site structures. 	 Mixed use (residential and commercial); and Service station continuing to operate 60m to north of site.

4.6 Integrity of Site History Information

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. JKE has relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 10.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	CoPC
 <u>Fill material</u> – The site appears to have been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. Fill material (i.e. igneous gravels) was observed in the landscaped areas and garden beds during the site inspection. 	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
<u>Mechanics Workshop</u> – Historical title records indicate the north-eastern lot (Lot 9 in DP11037), was owned by a mechanic between 1915-1920. While it is unlikely residual contamination remains from this land use, for completeness it has been included as an AEC.	Heavy metals, TRH, naphthalene and BTEX
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals and OCPs
Hazardous Building Material – Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site.	Asbestos and lead
Off-site area 1 – A service station is located within 60m of the northern boundary of the site and is considered to be a potential off-site source of contamination due to the regional geology and topography. This property has been a service station since at least 1950.	Heavy metals (lead), TRH, BTEX and PAHs

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Based on the site history information, JKE is of the opinion that there are no onsite point sources for Per- and Polyfluoroalkyl Substances (PFAS). We note that the Botany Bay area and Georges River located approximately 75m to the east of the site at its closest point, is within the NSW EPA PFAS investigation program. This was considered and discussed previously in Table 4-2.

It is noted that a broader suite of volatile organic compounds (VOCs) has been considered in groundwater for the PSI for screening purposes.

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM	
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. placement of fill, leaching from surficial material etc), or sub-surface release (e.g. impacts from buried material); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas); and Off-site land uses – 'top-down', spill or sub-surface release. Impacts to the site could occur via migration of contaminated groundwater.
Affected media	Soil and groundwater have been identified as potentially affected media. It is noted that some of the CoPC for fill are potentially volatile. The need to consider soil vapour as a potentially affected medium would be assessed based on the findings of the PSI and the final proposed development details.
Receptor identification	 Human receptors include site occupants/users (including adults and children in a residential scenario and adults in a commercial scenario), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, groundwater users and recreational water users within Botany Bay. Ecological receptors include terrestrial organisms and plants within unpaved areas, and freshwater/marine ecology in Botany Bay. Whilst the proposed development scenario includes a basement cover the majority of the site and no on-ground landscaping, the PSI has considered terrestrial ecological receptors for screening purposes.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements. Exposure to groundwater could occur in Botany Bay via direct migration. Groundwater also has the potential to enter the bay via the stormwater system (which is expected to discharge into the bay) during construction dewatering.

Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed basement and/or building (i.e. from volatilisation of contaminants from groundwater – depending on the basement taking/waterproofing solution); Contact (dermal, ingestion or inhalation) with exposed soils; Migration of groundwater off-site and into nearby water bodies, including aquatic ecosystems and those being used for recreation; and Migration of groundwater off-site into areas where groundwater is being utilised as a resource (i.e. for irrigation).
Presence of preferential pathways for contaminant movement	Local services (i.e. those not shown on the DBYD plans) such as stormwater pipe trenches could act as preferential pathways for contaminant migration. This could occur through fill soil and/or via groundwater/seepage. This would be dependent on the contaminant type and transport mechanisms.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 8.1 and the detailed evaluation is provided in the appendices.

6.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the consent authority in exercising its planning functions in relation to the development proposal.

A waste classification is required prior to off-site disposal of excavated soil and an assessment of ASS is also required to establish whether management of ASS materials will be necessary.

6.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?
- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is further investigation or remediation required?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?
- Are PASS/ASS likely to be disturbed during the proposed development?

6.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils and groundwater for the CoPC identified in the CSM, as well as soils for ASS properties; and

• Field and laboratory QA/QC data.

6.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown in Figure 2 and will be limited vertically to a depth of 7m below ground level (spatial boundary). The sampling was completed on 2 May 2022 (temporal boundary). The assessment of potential risk to adjacent land users has been made based on data collected within the site boundary.

Sampling was not undertaken within the existing building footprint due to access constraints.

6.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

6.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 7. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the spatial distribution of the data and the number of samples submitted for analysis.

6.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of intra-laboratory duplicates, trip spike, trip blank and rinsate samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

6.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

6.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

Quantitative limits on decision errors were not established as the sample plan was not probabilistic.

6.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this investigation is outlined in the table below:

Aspect	Input
Sampling	Samples were collected from seven locations as shown on the attached Figure 2. Based on the site
Density	area (4,470m ²), this number of locations corresponded to a sampling density of approximately one sample per 639m ² . The sampling plan was not designed to meet the minimum sampling density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995) ¹⁰ .
	It should be noted that sampling locations were only positioned in the western half of the site due to access constraints imposed by the buildings and structures in the east.
Sampling Plan	The sampling locations were placed on a judgemental sampling plan and were broadly positioned for coverage, taking into consideration areas that were not easily accessible. This sampling plan was considered suitable to make a preliminary assessment of potential risks associated with the AEC and CoPC identified in the CSM, and assess whether further investigation is warranted.

Table 6-1: Soil Sampling Plan and Methodology

¹⁰ NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	Samples for ASS assessment were obtained and analysed from BH1 and BH5 only.
Set-out and	Sampling locations were set out using a tape measure. In-situ sampling locations were checked for
Sampling Equipment	underground services by an external contractor prior to sampling.
	Samples were collected using a drill rig equipped with spiral flight augers (150mm diameter). Soil
	samples were obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or
	directly from the auger.
Sample	Soil samples were obtained on 2 May 2022 in accordance with our standard field procedures. Soil
Collection and	samples were collected from the fill and natural profiles based on field observations. The sample
Field QA/QC	depths are shown on the logs attached in the appendices.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags and samples for ASS analysis were placed in plastic bags sealed with twist ties. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure included alternately filling the sampling containers to obtain a representative split sample.
Field Screening	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from
	partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKE.
	The field screening for asbestos quantification included the following:
	• A representative bulk sample was collected from fill at 1m intervals, or from each distinct fill
	profile. The quantity of material for each sample varied based on whatever return could be
	achieved using the auger. The bulk sample intervals are shown on the attached Table S5;Each sample was weighed using an electronic scale;
	 Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement;
	 The condition of fibre cement or any other suspected asbestos materials was noted on the field records; and
	 If observed, any fragments of fibre cement in the bulk sample were collected, placed in a zip-
	lock bag and assigned a unique identifier. Calculations for asbestos content were undertaken
	based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 7.1.
	Bulk 10L samples could not be obtained during soil sampling from all fill profiles due to the lack of
	sample return from augers. However, 500mL samples were obtained from all sampling locations for asbestos analysis.
	A calibration/check of the accuracy of the scale used for weighing the fibre cement fragments was
	undertaken using a set of calibration weights. Calibration/check records are maintained on file by
	JKE. The scale used to weigh the 10L samples was not calibrated, however this is not considered significant as this method of providing a weight for the bulk sample is considered to be
	considerably more accurate than applying a nominal soil density conversion.

Aspect	Input
Decontami- nation and Sample	Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated using Decon and potable water.
Preservation	Soil samples were preserved by immediate storage in an insulated sample container with ice. ASS samples were placed in bags with minimal head-space (i.e. with the air squeezed out). On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE warehouse (or in freezers in the case of the ASS samples) before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in BH1 (MW1) and BH5 (MW5). The wells were positioned to gain a snap-shot of the groundwater conditions. Considering the topography and the location of the nearest down-gradient water body, MW1 and MW5 were considered to be in the up-gradient to intermediate area of the site and would be expected to provide an indication of groundwater flowing onto (beneath) the site from the west.
Monitoring Well Installation Procedure	 The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. Both of the monitoring wells were installed to depths of approximately 6m below ground level. The wells were generally constructed as follows: 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of the well to intersect groundwater; 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water.
Monitoring Well Development	 The monitoring wells were developed on 2 May 2022 using a submersible electrical pump. The monitoring wells were developed until steady state conditions were achieved. Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown. The field monitoring records and calibration data are attached in the appendices.
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately three days after development. Groundwater samples were obtained on 5 May 2022. Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter. The monitoring well head space was checked for VOCs using a calibrated PID unit. The samples were obtained using a peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments:

Table 6-2: Groundwater Sampling Plan and Methodology

Aspect	Input
Aspect	 SWL using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown.
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data are attached in the appendices.
Sample Preservation	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.
	The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.3.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-3: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	294592, 294592-A, 294586, 294586-A, and 294828.

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'Residential with minimal opportunities for soil access; including dwellings with fully/permanently paved yards like high-rise buildings' exposure scenario (HIL-B). These criteria are considered suitable given the proposed development is still in the concept stage;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B).
 HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹¹; and
- Asbestos was assessed on the basis of presence/absence and against the HSL-B criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability			
Asbestos in Soil	 The HSL-B criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021)¹². The SAC include the following: No visible asbestos at the surface/in the top 10cm of soil; <0.04% w/w bonded asbestos containing material (ACM) in soil; and <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. 			
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (kg)</u> Soil volume (L) x soil density (kg/L)			
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):			

Table 7-1: Details for Asbestos SAC

¹¹ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

¹² Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.* (referred to as WA DoH 2021)

Guideline	Applicability	
	% w/w asbestos in soil =	% asbestos content x bonded ACM (g)
		Soil weight (g)

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹³;
- ESLs were adopted based on the 'coarse' soil type; and
- EILs for selected metals were calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁴. These data were used to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁵. This method is considered to be adequate for the Tier 1 screening.

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁶ as outlined in the following table:

Category	Description			
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 			
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste. 			

Table 7-2: Waste	Categories
------------------	------------

¹³ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

 ¹⁴ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No.* 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission
 ¹⁵ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No.* 4. Department of Human Services and Health, Environment Protection Agency, and South Australia. *Contaminated Sites Monograph Series No.* 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.
 ¹⁶ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

Category	Description			
Hazardous Waste	 If SCC > CT2 then TCLP is needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste. 			
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. 			

7.1.5 Acid Sulfate Soil

The action criteria presented in the *National Acid Sulfate Soil Guidance: National acid sulfate soils sampling and identification methods manual* (2018) are summarised in the following table. The action criteria for 'coarse textured soils' were adopted.

Type of material		Net Acidity			
Texture range*	Approximate	1–1000 t materials disturbed		> 1000 t materials disturbed	
(NCST 2009)	clay content	% S-equiv.	mol H⁺/t (oven-	% S-equiv.	mol H⁺/t (oven-
	(%)	(oven-dried	dried basis)	(oven-dried	dried basis)
		basis)		basis)	
Fine - light medium	>40	≥0.10	≥62	≥0.03	≥18
to heavy clays					
Medium - clayey	5–40	≥0.06	≥36	≥0.03	≥18
sand to light clays					
Coarse and Peats -	<5	≥0.03	≥18	≥0.03	≥18
sands to loamy					
sands					

Table 7-3: ASS Action Criteria

* If bulk density values are not available for the conversion of cubic meters to tonnes of soil, then default bulk densities, based on the soil texture, may be used.

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁷. Environmental values for this investigation include aquatic ecosystems, human uses, and human-health risks in non-use scenarios.

7.2.1 Human Health

• The NEPM (2013) HSLs were not applicable for this project as the groundwater was recorded at depths shallower than 2m. On this basis, JKE has undertaken a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment

¹⁷ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):

- Australian Drinking Water Guidelines 2011 (updated 2021)¹⁸ for BTEX compounds and selected VOCs;
- World Health Organisation (WHO) document titled Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality (2008)¹⁹ for petroleum hydrocarbons;
- o USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
- The use of the laboratory PQLs for other contaminants where there were no Australian guidelines; and
- The ADWG 2011 were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, or with seepage water in the basement). These have been deemed as 'recreational' SAC.

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of marine species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)²⁰. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

¹⁸ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁹ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

²⁰ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description				
Pavement	Asphaltic Concrete (AC)/Concrete pavement was encountered at the surface in all boreholes and was between 30mm and 160mm in thickness.				
Fill	Fill was encountered beneath the pavement in all boreholes and extended to depths of approximately 0.3mBGL to 1.5mBGL.				
	The fill typically comprised silty clayey sand, silty sandy clay, and silty clay with inclusions of igneous gravel, silt, concrete and terracotta fragments and ash.				
	Neither staining nor odours were encountered in the fill material during the fieldwork. No suspected ACM was encountered in the fill material during the fieldwork.				
Natural Soil	Natural marine sandy soils were encountered beneath the fill in all boreholes and extended to the maximum depth of the investigation at approximately 7mBGL.				
	Neither staining nor odours were encountered in the natural soil during the fieldwork.				
Groundwater	Groundwater seepage was encountered in boreholes BH1, BH2, BH4, BH5, BH6 and BH7 during drilling at depths of approximately 1.6mBGL to 2mBGL. The SWLs measured in the boreholes ranged from 1.6mBGL to 2mBGL a short time after completion of drilling. BH3 remained dry during and a short time after drilling.				

Table 8-1: Summary of Subsurface Conditions

8.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 8-2: Summary of Field Screening		
Aspect	Details	
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 0.1ppm equivalent isobutylene. These results indicate a general lack of PID detectable VOCs.	
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report Table S5. All results were below the SAC. Suspected ACM was not identified in any of the samples during field work.	

Table 8-2: Summary of Field Screening

Aspect	Details
Groundwater Depth & Flow	With the exception of BH3, groundwater seepage was encountered in all boreholes during drilling at depths of approximately 1.6mBGL to 2mBGL. A standing water level (SWL) was measured in the boreholes at depths ranging from 1.6mBGL to 2mBGL a short time after completion of drilling.
	SWLs measured in the monitoring wells installed at the site ranged from 1.72mBGL to 1.93mBGL. The SWLs indicate that excavation for the proposed basement is likely to intercept groundwater.
	The groundwater flow direction was not established however we consider it likely that groundwater flows eastward towards the bay.
Groundwater Field	Field measurements recorded during sampling were as follows:
Parameters	- pH ranged from 7.26 to 7.3;
	- EC ranged from 258.5µS/cm to 407.8µS/cm;
	- Eh ranged from 89.5mV to 108.8mV; and
	- DO ranged from 0.4mg/L to 1mg/L; and
	- PID in well headspace ranged from 0.2ppm to 0.4ppm.
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.

8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	9	<4	0	0	-
Cadmium	9	<0.4	0	NSL	-
Chromium (total)	9	71	0	0	-
Copper	9	49	0	0	-
Lead	9	50	0	0	-
Mercury	9	<0.1	0	NSL	-

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Nickel	9	68	0	4	Nickel concentrations in SDUP1/BH1 (0.15-0.25), BH4 (0.2- 0.3m), BH5 (0.16-0.3m) and BH6 (1.3-1.5m) exceeded the ecological SAC of 35mg/kg.
Zinc	9	96	0	0	-
Total PAHs	9	1.4	0	NSL	-
Benzo(a)pyrene	9	0.1	NSL	0	-
Carcinogenic PAHs (as BaP TEQ)	9	<0.5	0	NSL	-
Naphthalene	9	<1	0	NSL	-
DDT+DDE+DDD	7	<0.1	0	NSL	-
DDT	7	<0.1	NSL	0	-
Aldrin and dieldrin	7	<0.1	0	NSL	-
Chlordane	7	<0.1	0	NSL	-
Heptachlor	7	<0.1	0	NSL	-
Chlorpyrifos (OPP)	7	<0.1	0	NSL	-
PCBs	7	<0.1	0	NSL	-
TRH F1	9	<25	0	0	-
TRH F2	9	<50	0	0	-
TRH F3	9	<100	0	0	-
TRH F4	9	<100	0	0	-
Benzene	9	<0.2	0	0	-
Toluene	9	<0.5	0	0	-
Ethylbenzene	9	<1	0	0	-
Xylenes	9	<1	0	0	-

Analyte	Ν	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Asbestos (in soil) (%w/w)	7	0.0792%w/w ACM <0.001%w/w AF/FA	2	NA	The reported ACM concentration of 0.0792%w/w in BH6 (0.3-0.5m) exceeded the HSL-B criterion. ACM was also detected in BH2 (0.8-1m).

Notes:

N: Total number (primary samples) NSL: No set limit NL: Not limiting

8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 7.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Table 8-4. Summary of Soil Laboratory	Results Compared to CT and SCC Criteria

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	9	0	0	-
Cadmium	9	0	0	-
Chromium	9	0	0	-
Copper	9	NSL	NSL	-
Lead	9	0	0	-
Mercury	9	0	0	-
Nickel	9	2	0	Nickel concentrations exceeded the CT1 criterion in two fill samples collected from BH4 (0.2-0.3m) and BH6 (0.15-0.25m). The maximum nickel concentration was 68mg/kg.
Zinc	9	NSL	NSL	-
TRH (C6-C9)	9	0	0	-
TRH (C10-C36)	9	0	0	-
BTEX	9	0	0	-
Total PAHs	9	0	0	-
Benzo(a)pyrene	9	0	0	-
OCPs & OPPs	7	0	0	-

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
PCBs	7	0	0	-
Asbestos	7	-	-	Asbestos was detected in two fill samples collected from BH2 (0.8-1.0m) and BH6 (0.3-0.5m).

N: Total number (primary samples)

NSL: No set limit

Table 8-5: Summary of Soil Laboratory Results Compared to TCLP Criteria

Analyte	Ν	N > TCLP Criteria	Comments
Nickel	2	0	The two fill samples with nickel concentrations above the CT1 criterion were analysed for TCLP lead.

N: Total number (primary samples)

8.4.3 Acid Sulfate Soil Assessment

The soil laboratory results were assessed against the action criteria adopted for the assessment. The results are presented in the attached report table A1 and summarised fin the following table:

Analysis	Ν	Comments
pH _F and pH _{FOX}	18	None of the pH_F results were below pH 4 and therefore none of the samples were indicative of actual ASS (AASS). The pH_{FOX} results ranged from pH 6.0 to pH 8.2. The calculated change in pH was between 1.1 and 2.8.
pH _{FOX} reaction rates	18	Reaction rates of the samples were generally in the low range with the shallow fill sample from BH1 in the high range. A total of seven samples were targeted for further acid base accounting analysis due to the pH _{FOX} results and/or for spatial/vertical coverage across the site to a maximum depth of 7mBGL.
Net Acidity % S- equiv.	7	The results ranged from <0.005%w/w to 0.05%w/w. One of the results was greater than the action criterion of 0.03%w/w. This occurred in BH5 at a depth of 6.9-7.0mBGL.
Net Acidity mol H ⁺ /t	7	The results ranged from less than the PQL to 69moles H ⁺ /tonnes. One of the results was greater than the action criterion of 18 moles H ⁺ /tonnes. This occurred in BH5 at a depth of 6.9-7.0mBGL.
S _{CR} %	7	The S_{CR} % results ranged from less than the PQL to 0.05% SCr. These results indicated that the soils generally did not contain significant oxidisable sulfur concentrations. An appreciable concentration of oxidisable sulfur was encountered in the BH5 (6.9-7.0m) sample, with an S_{CR} % result of 0.05%.
Liming Rate	7	The liming rate required for neutralisation ranged from less than the PQL to 2.2kg CaCO ₃ /tonne.

Table 8-6: Summary of ASS Results

N: Total number (primary samples)

8.5 Groundwater Laboratory Results

The groundwater laboratory results were assessed against the SAC presented in Section 7.2. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	2	6	0	2	The reported arsenic concentrations in MW1, MW5, and the field duplicate WDUP1 (primary sample MW1) of between 4µg/L and 6µg/L, exceeded the marine GIL for arsenic of 2.3µg/L.
Cadmium	2	<0.1	0	0	-
Chromium (total)	2	16	0	0	-
Copper	2	35	0	1	The reported copper concentrations in MW5 and the field duplicate WDUP1, of between 2µg/L and 35µg/L, exceeded the ecological GIL of 1.3µg/L.
Lead	2	<1	0	0	-
Mercury	2	<0.05	0	0	-
Nickel	2	<1	0	0	-
Zinc	2	26	0	1	The reported zinc concentration in MW5 of 26µg/L exceeded the marine GIL of 15µg/L.
Total PAHs	2	<0.1	0	0	-
Benzo(a)pyrene	2	<0.1	0	0	-
Naphthalene	2	<0.2	0	0	-
TRH F1	2	<10	0	NSL	-
TRH F2	2	<50	0	NSL	-
TRH F3	2	<100	NSL	NSL	-
TRH F4	2	<100	NSL	NSL	-
Benzene	2	<1	0	0	-
Toluene	2	<1	0	0	-
Ethylbenzene	2	<1	0	0	-
m+p-Xylene	2	<2	0	0	-

Table 8-7: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
o-Xylene	2	<1	0	0	-
Total Xylenes	2	<1	0	NSL	-
VOCs	2	<1	0	0	-
рН	2	7.6	0	0	-
EC	2	500	0	0	-

Notes:

^: Primary samples

N: Total number

NSL: No set limit

NL: Not limiting

9 WASTE CLASSIFICATION ASSESSMENT

9.1 Preliminary Waste Classification of Fill

Based on the results of the waste classification assessment, and at the time of reporting, the fill material is assigned a preliminary classification of **General Solid Waste (non-putrescible) containing Special Waste (asbestos)**.

Once the final development design is known, additional sampling and analysis should be undertaken to confirm the above classification prior to off-site disposal.

9.2 Preliminary Classification of Natural Soil

Based on the scope of work undertaken for this assessment, and at the time of reporting, JKE is of the opinion that a majority of the natural soil at the site down to a likely depth of approximately 5mBGL is likely to meet the definition of **VENM** for off-site disposal or re-use purposes. Natural soils below this depth appear to include potential ASS (PASS). This VENM classification should be confirmed via visual inspection and further sampling and analysis following removal of fill material and delineation of PASS at the site once the final design levels are confirmed.

10 DISCUSSION

10.1 Contamination Sources/AEC and Potential for Site Contamination

Based on the scope of work undertaken for this investigation, JKE identified the following potential contamination sources/AEC:

- Fill material;
- Historic onsite mechanics workshop;
- Use of pesticides;
- Hazardous building materials; and
- Off-site service station (located in close proximity to site).

Considering the above, and based on a qualitative assessment of various lines of evidence as discussed throughout this report, JKE is of the opinion that there is a potential for site contamination. The preliminary soil and groundwater data collected for the investigation is discussed further in the following subsection, as part of the Tier 1 risk assessment.

10.2 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.2.1 Soil

10.2.1.1 Asbestos

Asbestos as ACM was detected at a concentration above the human health SAC in fill material at one location, (BH6). It is also noted that ACM was detected in another location (BH2), although the concentration was below the human health SAC (see Figure 3). All asbestos detected at the site was in the bonded form. The source of the asbestos is considered likely to be associated with imported fill material, or with historical demolition activities. All ACM at the site was encountered in fill soils beneath paved areas, as such there is not considered to be a complete SPR-linkage to human receptors in the current site configuration.

Sampling was completed using a narrow diameter auger or pushtube drilling methods which limits disturbance of the soil. On this basis, there is uncertainty regarding the extent of potential of asbestos impacts within fill at the site. There was no significant evidence of demolition materials present within the fill at the site, however, the asbestos detected appeared to be within uncontrolled fill, which was present to varying depths across the site. It is not clear whether the asbestos detected on site is the result of historical onsite activities (e.g. demolition), or the result of imported uncontrolled filling material. Further assessment, management and remediation of asbestos in fill at the site is considered to be necessary.

10.2.1.2 Nickel

Nickel was detected at concentrations in fill that exceeded the ecological SAC. The elevations are shown on Figure 3. The source of the elevated nickel is considered likely to be associated with imported fill material. JKE had adopted the most conservative EIL values. Soil properties (pH and CEC) was not used in deriving the ACL for nickel. In the current site configuration, there is not considered to be a complete SPR linkage to the nickel impacted fill material and a complete SPR linkage is unlikely to exist in a proposed development scenario where a basement extends across the majority of the site. On this basis, the presence of nickel in fill is considered to pose a low ecological risk. This risk assessment must be reviewed when the proposed development details are finalised.

10.2.2 Groundwater

Elevations of arsenic, copper and zinc were encountered in the groundwater at concentrations greater than the GIL-ANZECC-Marine criteria which are applicable to marine ecological receptors. These elevations are not considered to represent a significant ecological risk for the following reasons:

- Elevated heavy metal concentrations (including copper and zinc) associated with leaking water infrastructure and surface water runoff are typically encountered in urban groundwater;
- The arsenic concentrations were consistent across the two wells, suggesting that the concentrations may be consistent with regional conditions;
- The site is predominantly paved and the fill was recorded above the water table, therefore there are limited leaching mechanisms; and
- Significantly elevated heavy metals (nominally arsenic, copper and zinc) concentrations (i.e. above the HILs) were not encountered in the fill soil at the site, therefore fill is not considered to be a point source.

A complete SPR linkage could exist in the event that construction dewatering activities are not appropriately managed. However, we note that a proposed development involving dewatering is expected to be an integrated development and the construction dewatering process would be regulated to minimise potential environmental risks in this regard.

The PSI did not identify any actual risks associated with off-site sources of potential groundwater contamination, such as the service station to the north.

10.2.3 ASS

The results of the net acidity analysis for one sample obtained from BH5 (6.9-7m) were greater than the action criteria. An elevated concentration of oxidisable sulfur, demonstrated by the low S_{CR} % result, was also encountered in this sample, suggesting that this material is PASS. PASS indicators were not encountered in the other samples collected from shallower depths.

Based on these results, PASS is considered to present in the deeper soils at the site (>5mBGL). Further assessment of the natural soils will be required to appropriately delineate the lateral and vertical extent. Disturbed PASS will require management during the works where natural soils are excavated/exposed to air. The management requirements are to be document in an ASSMP, once further specific details of the development are known, including final depths of disturbance etc.

10.3 Decision Statements

The decision statements are addressed below:

Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?

Refer to Section 10.1.

Are any results above the SAC?

Yes. ACM in fill was reported above the health based SAC and nickel was reported in fill above the ecological SAC. Arsenic, copper and zinc were reported in groundwater above the marine GILs.

Do potential risks associated with contamination exist, and if so, what are they?

Yes, potential human health risk associated with ACM in fill, potential ecological risk associated with nickel in fill exist at the site.

Is further investigation or remediation required?

The PSI identified ACM at concentrations in the fill soil which will require remediation. JKE recommend undertaking a DSI including additional soil and groundwater sampling to better characterise the site conditions and contamination issues, and inform the preparation of a remediation action plan (RAP).

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

JKE is of the opinion that the site can be made suitable for the proposed development.

Are PASS/ASS likely to be disturbed during the proposed development?

Yes.

10.4 Data Gaps

An assessment of data gaps is provided in the following table:

Table 10-1: Data Gap Assessment

Data Gap	Assessment
SafeWork records not reviewed	Given the history of the site, it is considered possible that records relating to the storage of dangerous goods may exist. Additional work to address this data gap is recommended.

Data Gap	Assessment
Soil sampling density below minimum guideline density	Sampling was limited to approximately 54% of the minimum sampling density recommended in the EPA Sampling Design Guidelines 1995 and to the west half of the site due to the existing buildings and structures. It is also noted that a majority of sampling occurred from boreholes which poses limitation for identifying asbestos in fill.
	As this was a preliminary intrusive investigation, a detailed investigation will be required to assess the full extent of soil contamination risks on site. Any risks associated with historical and current land-use should be assessed, along with other identified AEC. It is recommended that additional sampling is undertaken via test pits if practicable. Recommendations are included in Section 11 to address this data gap.
Groundwater flow direction not confirmed / groundwater assessment limited in scope	Groundwater characterisation was limited. Only two groundwater monitoring wells were installed in the up to cross gradient section of the site. This created a data gap for site coverage and could not facilitate the generation of a groundwater contour plot. Additional work to address this data gap is recommended and outlined in Section 11 to address this data gap.

11 CONCLUSIONS AND RECOMMENDATIONS

The PSI included a review of limited site history information, a site inspection, soil sampling from seven boreholes and groundwater sampling from two monitoring wells installed at the site. The site history information and site walkover inspection identified the following AEC: imported fill material; historic onsite mechanics workshop; use of pesticides; hazardous building materials; and an off-site service station (located in close proximity to site).

The boreholes encountered fill materials to depths of approximately 0.3mBGL to 1.5mBGL, underlain by sandy marine soils. The fill contained inclusions of igneous gravel, silt, concrete and terracotta fragments and ash. Asbestos and nickel were identified in soil at concentrations that exceeded the human health and ecological SAC respectively. Heavy metals (arsenic, copper and zinc) were also identified in groundwater above the ecological (marine) SAC.

The PSI has not identified contamination that would preclude the proposed development/use of the site. However, a Detailed Site Investigation (DSI) is required to address the data gaps identified in Section 10.4, characterise the risks and establish whether remediation is necessary (and inform the preparation of a RAP where required). We recommend the following:

- 1. Prepare a Sampling, Analysis and Quality Plan (SAQP) for the DSI;
- 2. Undertake a DSI in accordance with the SAQP; and
- 3. Where required (i.e. if triggered following the DSI risk assessment), develop and implement a RAP. Any requirements documented in a RAP are to be implemented and the site is to be remediated and validated.

The natural soil below a depth of 5mBGL is considered to be PASS. An ASSMP should be prepared once specific details of the development are known, including final depths of disturbance etc. The need for additional sampling and analysis for ASS characteristics should be assessed as the design progresses.

At this stage, JKE consider that there is currently no requirement to report any site contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015). This will be further evaluated as part of the DSI.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

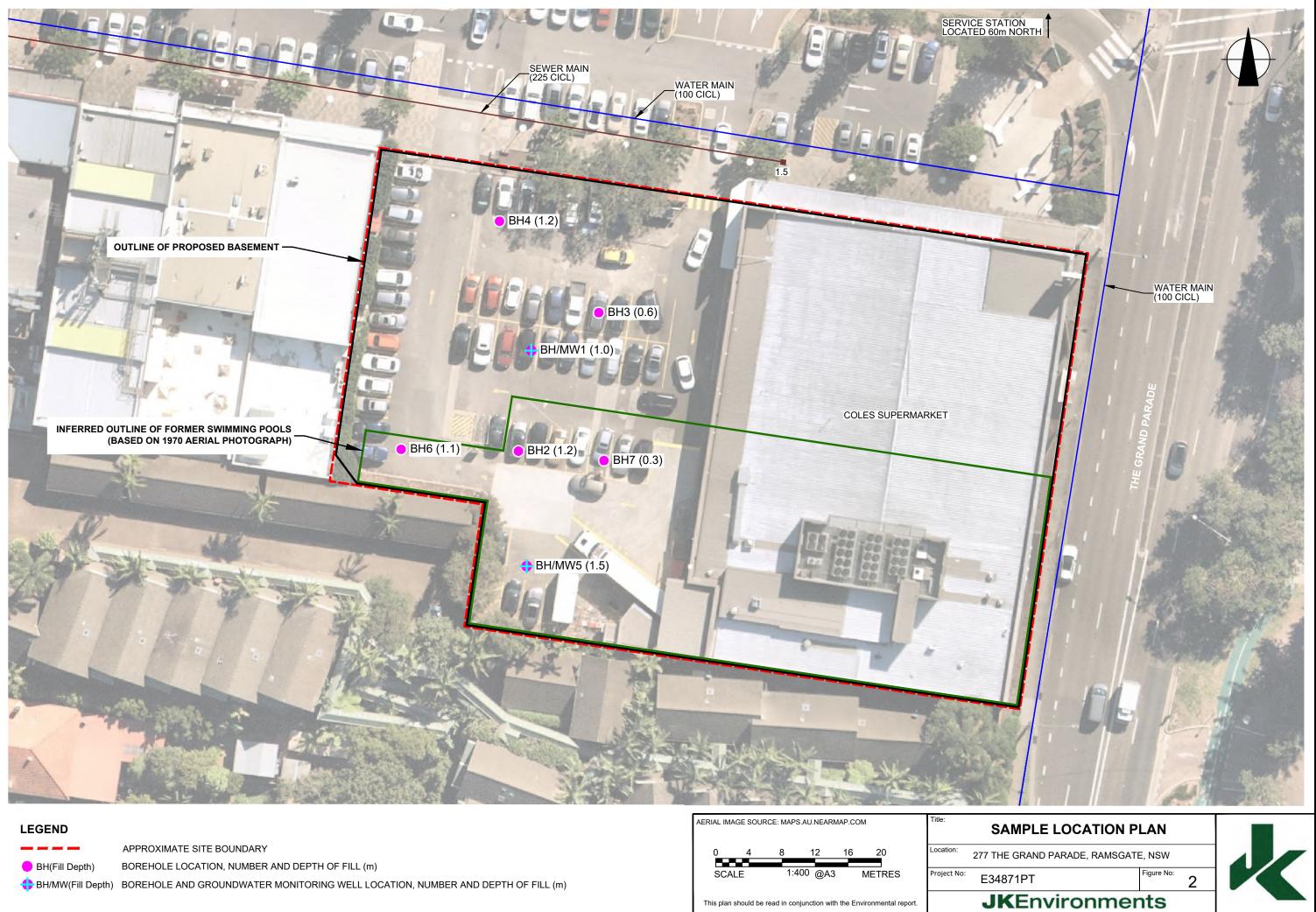
Logs Should not be Separated from the Investigation Report

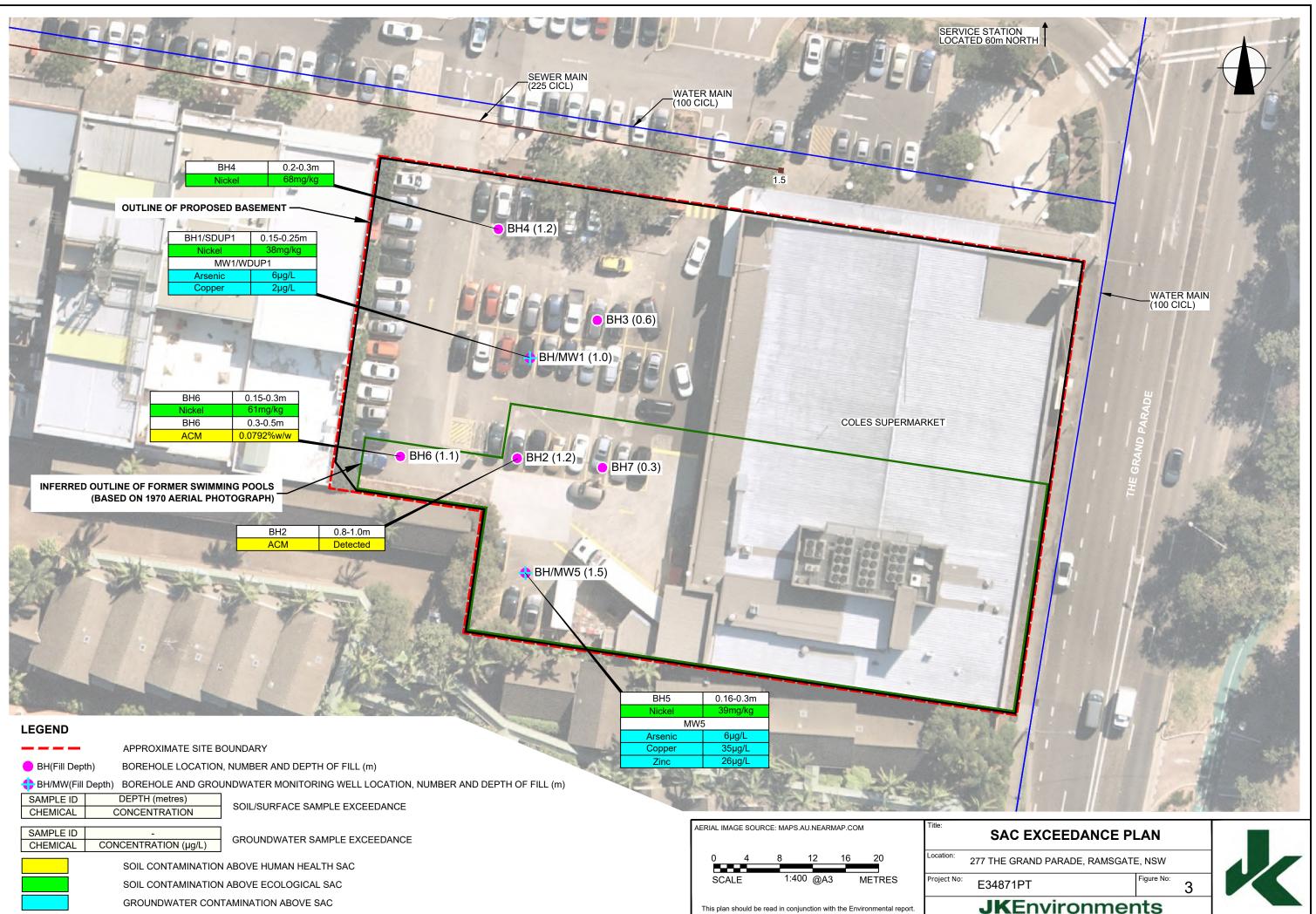
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.


Appendix A: Report Figures



ATE: 8/01/2024 12/42:35 PM DWG FILE: K/5C EIS JOBS/34000'S/E34871PT RAMSGATE/CAD/E34871P1

TOR

LEGEND	AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM	Title: SA
	0 4 8 12 16 20	Location: 277 THE
 BH(Fill Depth) BOREHOLE LOCATION, NUMBER AND DEPTH OF FILL (m) BH/MW(Fill Depth) BOREHOLE AND GROUNDWATER MONITORING WELL LOCATION, NUMBER AND DEPTH OF FILL (m) 	SCALE 1:400 @A3 METRES	Project No: E3487
	This plan should be read in conjunction with the Environmental report.	JK

Appendix B: Site Information and Site History

Proposed Development Plans

December, 2023

RAMSGATE BEACH APARTMENTS 277 The Grand Parade, Ramsgate **NSW 2217**

Development Application

Craft Architecture

Level 9, 187 Macquarie Street Sydney 2000 NSW

craft-arch.com.au

Drawing List

O001 COVER PAGE 0100 OVERALL PLAN: 0100 LOCATION PLAN 0101 SITE PLAN 0103 DEMOLITION PLAN 0200 FLOOR PLANS FLOOR PLAN B3 0201 FLOOR PLAN B3 0202 FLOOR PLAN B1 0203 FLOOR PLAN B1 0204 FLOOR PLAN G 0204 FLOOR PLAN I 0205 FLOOR PLAN I 0206 FLOOR PLAN I 0205 FLOOR PLAN I 0206 FLOOR PLAN I 0207 FLOOR PLAN I 0208 FLOOR PLAN I 0209 ROF PLAN I 0200 ROF PLAN I 0201 ROF PLAN I 0202 FLOOR PLAN I 0203 ECOR PLAN I 0204 SECTIONS SHEET I 0501 EEVATIONS SHEET 2 0601 SECTIONS SHEET 2 0900 ADAPTABLE APARTMENT PLANS 3100 ADAPTABLE APARTMENT PLANS 3101 LANDSCAPE, SOLAR, CROSS-FLOW	0000 PRELIMINAR	
0100LOCATION PLAN0101SITE PLAN0103DEMOLITION PLAN0200 FLOOR PLANSFLOOR PLAN B30201FLOOR PLAN B20202FLOOR PLAN B10203FLOOR PLAN B10204FLOOR PLAN L10205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50209ELEVATIONS SHEET 10500 ELEVATIONSELEVATIONS SHEET 20601SECTIONS SHEET 20602SECTIONS SHEET 20900 DETAIL PLANSJADAPTABLE APARTMENT PLANS3100 AREA PLANSJADAPTABLE APARTMENT PLANS3101GFA PLANS3101SECTIONS SHEET 23201 SOLAR ANALYJADAPTABLE APARTMENT PLANS3201 SOLAR ANALYJADAPTABLE APARTMENT PLANS3202 SOLAR ANALYJADAPTABLE APARTMENT PLANS3203 SOLAR ANALYJADAPTABLE APARTMENT PLANS3204 SOLAR ANALYJADAPTABLE APARTMENT PLANS <td></td> <td></td>		
0101SITE PLAN0103DEMOLITION PLAN0200 FLOOR PLANSFLOOR PLAN B30201FLOOR PLAN B20202FLOOR PLAN B10203FLOOR PLAN G0204FLOOR PLAN L10205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN L50201ELEVATIONS SHEET 10502ELEVATIONS SHEET 20601SECTIONS SHEET 20602SECTIONS SHEET 20900 DETAIL PLANSSHEET 10900ADAPTABLE APARTMENT PLANS3101GFA PLANS3102SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13204SHADOW DIAGRAMS - SHEET 23205SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 13203SHEW FROM SUN - SHEET 23203SHEW FROM SUN - SHEET 33204SHEW FROM SUN - SHEET 3<		
0103DEMOLITION PLAN0200 FLOOR PLANS0200FLOOR PLAN B30201FLOOR PLAN B10202FLOOR PLAN B10203FLOOR PLAN G0204FLOOR PLAN L10205FLOOR PLAN L30206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSELEVATIONS SHEET 10502ELEVATIONS SHEET 10503SECTIONS SHEET 20600 SECTIONSSECTIONS SHEET 20900 DETAIL PLANSSECTIONS SHEET 20900 DETAIL PLANSJAPATABLE APARTMENT PLANS3100 AREA PLANSGFA PLANS3101GFA PLANS3100 AREA PLANSSHEET 23201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3 <td></td> <td></td>		
0200 FLOOR PLANS 0200 FLOOR PLAN B3 0201 FLOOR PLAN B1 0202 FLOOR PLAN B1 0203 FLOOR PLAN G 0204 FLOOR PLAN L1 0205 FLOOR PLAN L2 0206 FLOOR PLAN L3 0207 FLOOR PLAN L4 0208 FLOOR PLAN L5 0201 ROOF PLAN L5 0202 ELEVATIONS SHEET 1 0500 ELEVATIONS ELEVATIONS SHEET 2 0601 SECTIONS SHEET 1 0602 SECTIONS SHEET 1 0603 SECTIONS SECTIONS SHEET 1 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SHEET 1 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SHEET 1 10602 SECTIONS SHEET 2 0900 DETAIL PLANS SHET 1 3101 LANDSCAPE, SOLAR, CROSS-FLOW 3202 SHADOW DIAGRAMS - SHEET 1 3203 SHADOW DIAGRAMS - SHEET 2 3203 SHADOW DIAGRAMS - SHEET 1 3291 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 2		
0200FLOOR PLAN B30201FLOOR PLAN B20202FLOOR PLAN B10203FLOOR PLAN G0204FLOOR PLAN L10205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSELEVATIONS SHEET 10502ELEVATIONS SHEET 20601SECTIONS SHEET 20602SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANSSHET 10900ADAPTABLE APARTMENT PLANS3100 AREA PLANSSHADOW DIAGRAMS - SHEET 13201SHADOW DIAGRAMS - SHEET 13203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 33291VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 33000 VIEWSVIEW FROM SUN - SHEET 3		
0201FLOOR PLAN B20202FLOOR PLAN B10203FLOOR PLAN G0204FLOOR PLAN L10205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSELEVATIONS SHEET 10502ELEVATIONS SHEET 20601SECTIONS SHEET 10602SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANSJAPTABLE APARTMENT PLANS3100 AREA PLANSJANDSCAPE, SOLAR, CROSS-FLOW3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13204YIEW FROM SUN - SHEET 13205SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13204YIEW FROM SUN - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3 <tr< td=""><td></td><td></td></tr<>		
0202 FLOOR PLAN B1 0203 FLOOR PLAN G 0204 FLOOR PLAN L1 0205 FLOOR PLAN L2 0206 FLOOR PLAN L3 0207 FLOOR PLAN L4 0208 FLOOR PLAN L5 0210 ROOF PLAN L5 0200 ELEVATIONS SHEET 1 0500 ELEVATIONS ELEVATIONS SHEET 2 0601 ELEVATIONS SHEET 1 0602 SECTIONS SHEET 1 0602 SECTIONS SHEET 1 0602 SECTIONS SHEET 1 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SHET 2 101 GFA PLANS 3100 AREA PLANS JANDSCAPE, SOLAR, CROSS-FLOW 3200 SOLAR ANALY SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 3 3291 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3 3293 </td <td></td> <td></td>		
0203 FLOOR PLAN G 0204 FLOOR PLAN L1 0205 FLOOR PLAN L2 0206 FLOOR PLAN L3 0207 FLOOR PLAN L4 0208 FLOOR PLAN L5 0210 ROOF PLAN L5 02010 ELEVATIONS SHEET 1 0500 ELEVATIONS ELEVATIONS SHEET 2 0601 SECTIONS SHEET 2 0602 SECTIONS SHEET 2 0601 SECTIONS SHEET 2 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SHEET 2 0900 DETAIL PLANS JOAPTABLE APARTMENT PLANS 3100 AREA PLANS JANDSCAPE, SOLAR, CROSS-FLOW 3200 SOLAR ANALY SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 1 3201 MEW FROM SUN - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 1 3203 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 1 3292 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN -		
0204FLOOR PLAN L10205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSFLEVATIONS SHEET 10500 CELEVATIONSELEVATIONS SHEET 20600 SECTIONSELEVATIONS SHEET 20601SECTIONS SHEET 20602SECTIONS SHEET 20900 DETAIL PLANSSHEET 20900 DETAIL PLANSJAPTABLE APARTMENT PLANS110GFA PLANS3101GFA PLANS3102SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 13293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3 <td></td> <td></td>		
0205FLOOR PLAN L20206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSELEVATIONS SHEET 10500 SECTIONSELEVATIONS SHEET 20600 SECTIONSSECTIONS SHEET 10601SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANSECTIONS SHEET 20900 DETAIL PLANSJAPTABLE APARTMENT PLANS100 AREA PLANSJANDSCAPE, SOLAR, CROSS-FLOW3101GFA PLANS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3		
0206FLOOR PLAN L30207FLOOR PLAN L40208FLOOR PLAN L50210ROOF PLAN0500 ELEVATIONSELEVATIONS SHEET 10500 ELEVATIONSELEVATIONS SHEET 20501ELEVATIONS SHEET 20600 SECTIONSSECTIONS SHEET 10602SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANSSECTIONS SHEET 20900 DETAIL PLANSADAPTABLE APARTMENT PLANS100 AREA PLANSSIOLAR ANALY3101GFA PLANS3102SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 13293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3		
0207 FLOOR PLAN L4 0208 FLOOR PLAN L5 0210 ROOF PLAN 0500 ELEVATIONS ELEVATIONS SHEET 1 0501 ELEVATIONS SHEET 2 0500 SECTIONS ELEVATIONS SHEET 2 0600 SECTIONS SECTIONS SHEET 1 0601 SECTIONS SHEET 2 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SECTIONS SHEET 2 0900 DETAIL PLANS ADAPTABLE APARTMENT PLANS 3100 AREA PLANS ADAPTABLE APARTMENT PLANS 3101 GFA PLANS 3101 ANDSCAPE, SOLAR, CROSS-FLOW 3200 SOLAR ANALY SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 3 3201 SHADOW DIAGRAMS - SHEET 3 3201 SHADOW DIAGRAMS - SHEET 3 3203 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 1 3292 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3		
0208 FLOOR PLAN LS 0210 ROOF PLAN 0500 ELEVATIONS ELEVATIONS SHEET 1 0501 ELEVATIONS SHEET 2 0502 ELEVATIONS SHEET 2 0600 SECTIONS SECTIONS SHEET 2 0601 SECTIONS SHEET 2 0602 SECTIONS SHEET 2 0900 DETAIL PLANS ADAPTABLE APARTMENT PLANS 0900 ADAPTABLE APARTMENT PLANS 3100 AREA PLANS ADAPTABLE SOLAR, CROSS-FLOW 3101 GFA PLANS 3102 SHADOW DIAGRAMS - SHEET 1 3203 SHADOW DIAGRAMS - SHEET 2 3203 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 2 3292 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 3 4000 VIEWS VIEW FROM SUN - SHEET 3		
0210 ROOF PLAN 0500 ELEVATIONS ELEVATIONS SHEET 1 0501 ELEVATIONS SHEET 2 0502 ELEVATIONS SHEET 1 0600 SECTIONS SECTIONS SHEET 1 0601 SECTIONS SHEET 2 0602 SECTIONS SHEET 2 0900 DETAIL PLANS ADAPTABLE APARTMENT PLANS 0900 DETAIL PLANS ADAPTABLE APARTMENT PLANS 3100 AREA PLANS ADAPTABLE SOLAR, CROSS-FLOW 3110 GFA PLANS 3110 LANDSCAPE, SOLAR, CROSS-FLOW 3200 SOLAR ANALY SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 2 3203 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 2 3292 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 3 4000 VIEWS VIEW FROM SUN - SHEET 3		
0500 ELEVATIONS 0501 ELEVATIONS SHEET 1 0502 ELEVATIONS SHEET 2 0600 SECTIONS SECTIONS SHEET 1 0601 SECTIONS SHEET 1 0602 SECTIONS SHEET 2 0900 DETAIL PLANS SECTIONS SHEET 2 0900 DETAIL PLANS ADAPTABLE APARTMENT PLANS 3100 AREA PLANS ADAPTABLE APARTMENT PLANS 3101 GFA PLANS 3102 LANDSCAPE, SOLAR, CROSS-FLOW 3200 SOLAR ANALLY SHADOW DIAGRAMS - SHEET 1 3202 SHADOW DIAGRAMS - SHEET 3 3291 VIEW FROM SUN - SHEET 1 3292 VIEW FROM SUN - SHEET 2 3293 VIEW FROM SUN - SHEET 3 3293 VIEW FROM SUN - SHEET 3		
0501ELEVATIONS SHEET 10502ELEVATIONS SHEET 20600 SECTIONSSECTIONS SHEET 10601SECTIONS SHEET 20602SECTIONS SHEET 20900 DETAIL PLANSADAPTABLE APARTMENT PLANS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANSGFA PLANS3101GFA PLANS3102SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 33293VIEW FROM SUN - SHEET 3303VIEW FROM SUN - SHEET 3304VIEW FROM SUN - SHEET 3305VIEW FROM SUN - SHEET 3306VIEW FROM SUN - SHEET 3307VIEW FROM SUN - SHEET 3308VIEW FROM SUN - SHEET 3309VIEW FROM SUN - SHEET 3300VIEW FROM SUN - SHEET 3300VI		
0502ELEVATIONS SHEET 20600 SECTIONS0601SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANSADAPTABLE APARTMENT PLANS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANSSHADOS APART, CROSS-FLOW3101GFA PLANS3102 SOLAR ANALYSSHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 23204VIEW FROM SUN - SHEET 13291VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 33000 VIEWSVIEW FROM SUN - SHEET 3		
0600 SECTIONS0601SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANS ELEVATIONS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANS3101GFA PLANS3101LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSE3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 13291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSSHADOW DIAGRAMS - SHEET 3		
0601SECTIONS SHEET 10602SECTIONS SHEET 20900 DETAIL PLANS ELEVATIONS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANS3101GFA PLANS3101LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSE3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSSUN - SHEET 3		ELEVATIONS SHEET 2
0602SECTIONS SHEET 20900 DETAIL PLANS ELEVATIONS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANS3101GFA PLANS3101LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW FROM SUN - SHEET 3	0600 SECTIONS	
0900 DETAIL PLANS ELEVATIONS0900ADAPTABLE APARTMENT PLANS3100 AREA PLANS3101GFA PLANS3101LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW FROM SUN - SHEET 3	0601	SECTIONS SHEET 1
0900ADAPTABLE APARTMENT PLANS3100 AREA PLANS3101GFA PLANS3101LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWS		
3100 AREA PLANS3101GFA PLANS3110LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW FROM SUN - SHEET 3		
3101GFA PLANS3110LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW FROM SUN - SHEET 3		ADAPTABLE APARTMENT PLANS
3110LANDSCAPE, SOLAR, CROSS-FLOW3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSSHADOW SUN - SHEET 3	3100 AREA PLANS	
3200 SOLAR ANALYSIS3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWS	3101	GFA PLANS
3201SHADOW DIAGRAMS - SHEET 13202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW FROM SUN - SHEET 3	3110	LANDSCAPE, SOLAR, CROSS-FLOW
3202SHADOW DIAGRAMS - SHEET 23203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWSVIEW STOM SUN - SHEET 3	3200 SOLAR ANAL	
3203SHADOW DIAGRAMS - SHEET 33291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWS		
3291VIEW FROM SUN - SHEET 13292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWS	3202	SHADOW DIAGRAMS - SHEET 2
3292VIEW FROM SUN - SHEET 23293VIEW FROM SUN - SHEET 34000 VIEWS	3203	SHADOW DIAGRAMS - SHEET 3
3293VIEW FROM SUN - SHEET 34000 VIEWS	3291	VIEW FROM SUN - SHEET 1
4000 VIEWS	3292	VIEW FROM SUN - SHEET 2
	3293	VIEW FROM SUN - SHEET 3
4001 PERSPECTIVE VIEWS	4000 VIEWS	
	4001	PERSPECTIVE VIEWS

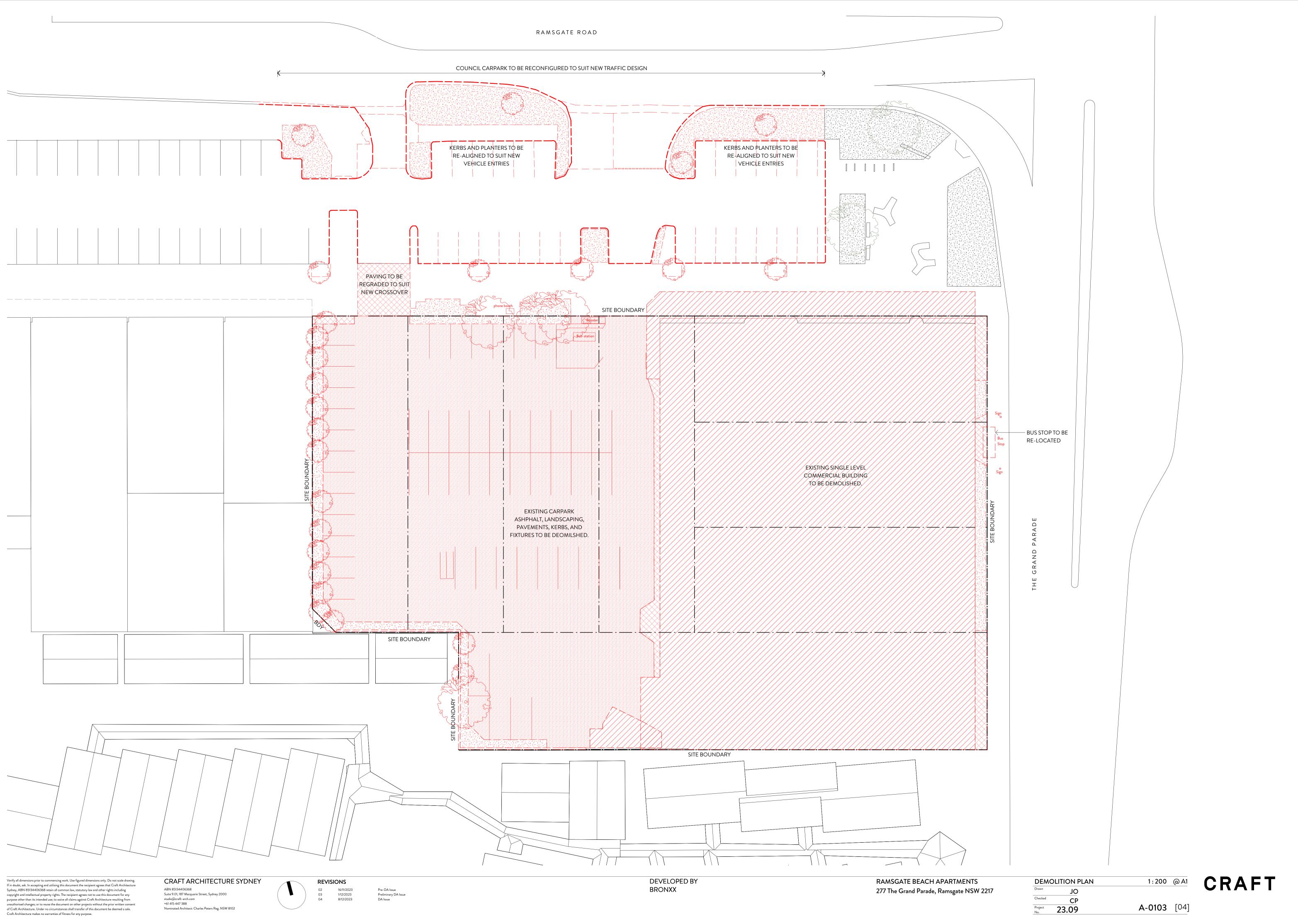
SITE AREA ALLOWABLE GFA ALLOWABLE FSR **PROPOSED GFA** PROPOSED FSR

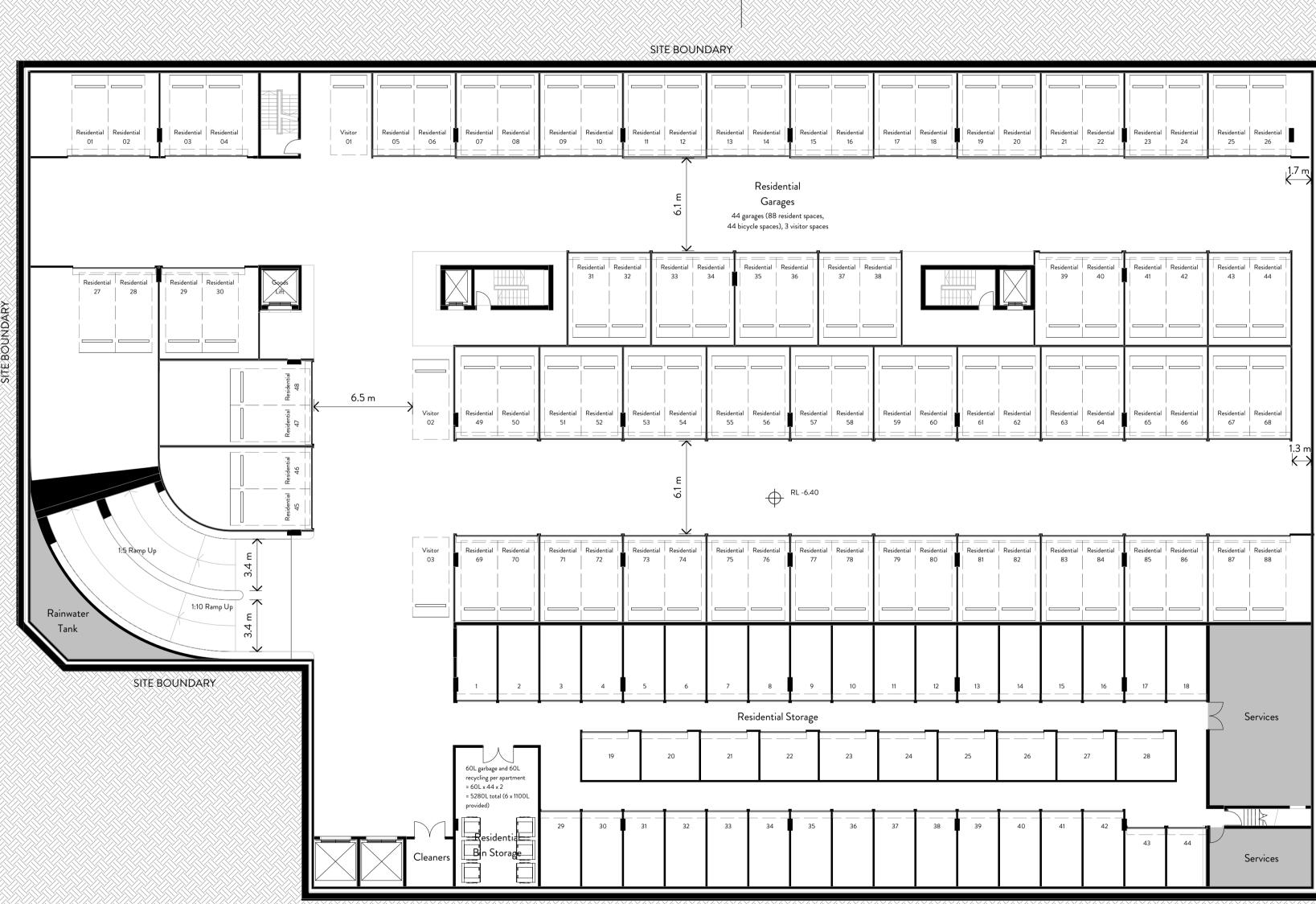
APARTMENTS

WATER Ra Fir Ba

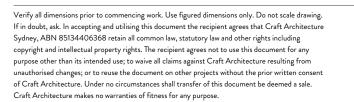
Area Summary

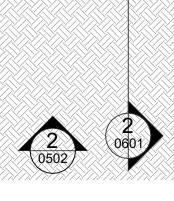
4,479 m² 8,958 m² 2:1 8958 m² 2:1


44 APARTMENTS

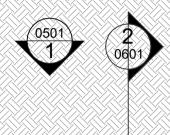

BASIX Commitments

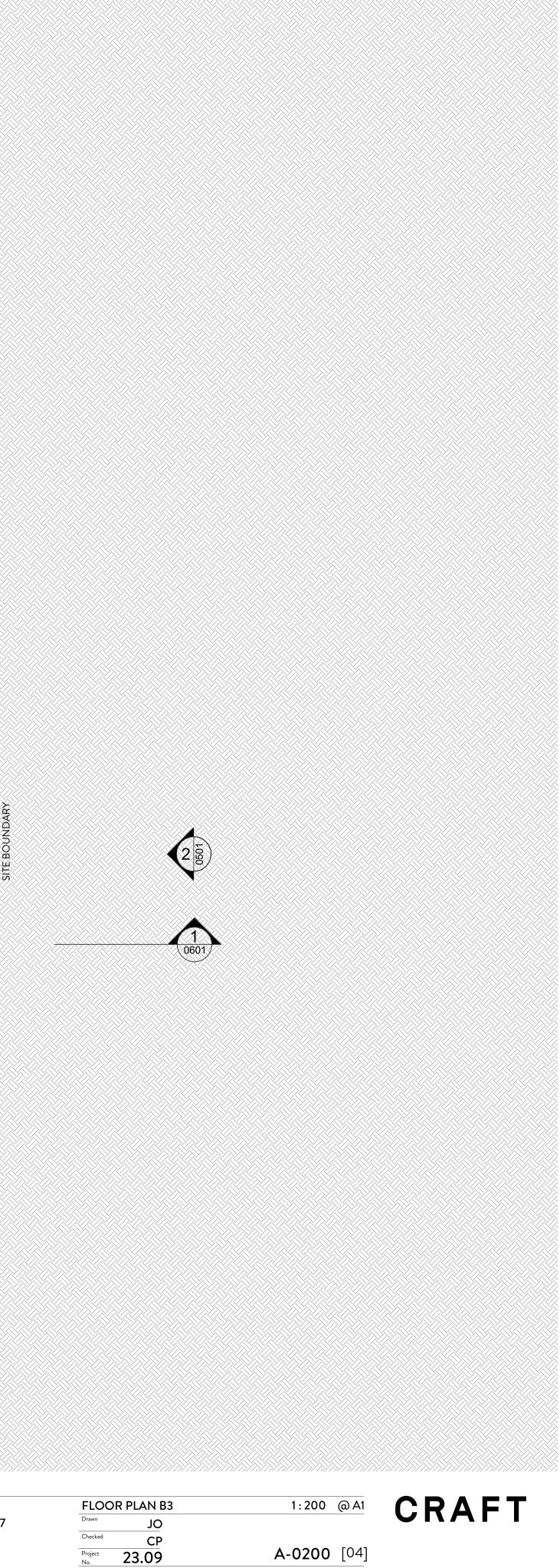
WATER Rainwater Tank Fire Sprinkler Systems Bathroom Taps Kitchen Taps Showerheads Toilet Flusher Dishwasher		Nil Closed loop test systems 5 Star 5 Star 4 Star (6 - 7.5L/min) 4 Star 4 Star (Water)
ENERGY		
Basement (Residential)	Ventilation: Lighting:	Supply + Exhaust w/ CO monitor + VSD fan Fluorescent w/ motion sensors
Substation	Ventilation: Lighting:	Supply only w/ thermostatically controlled Fluorescent w/ motion sensors
Plant Rooms	Ventilation: Lighting:	Supply only w/ thermostatically controlled Fluorescent w/ motion sensors
Ground Floor Lobby	Ventilation: Lighting:	Supply only LED w/ motion sensors
Lift x 2	Type: Lighting:	Gearless traction w/ VVVF Motor LED w/ connected to lift call button
Solar PV		Min 10kW peak system
DWELLINGS Hot Water		Gas instantaneous 6 star
Dwelling Ventilation	Bathroom fan: Kitchen fan: Laundry fan:	Externally ducted w/ manual switch Externally ducted w/ manual switch Externally ducted w/ manual switch
AC Cooling and Heating	System Type:	1 Phase AC Efficiency – EER/COP above 3.5 Day / Night Zoning – No
Lighting		Dedicated LED throughout all units
Appliances		Electric oven Induction cooktop Dishwater (4 star)

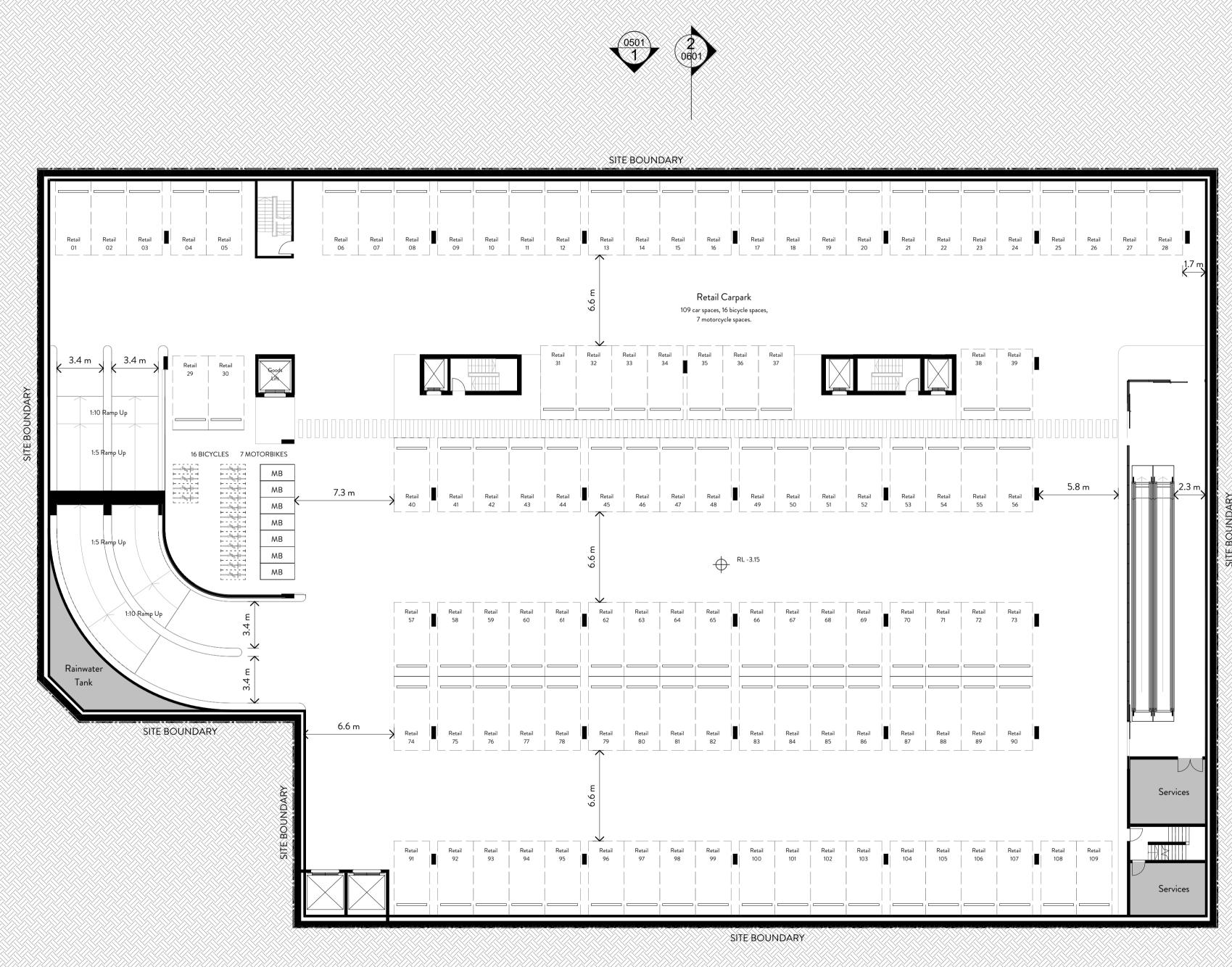


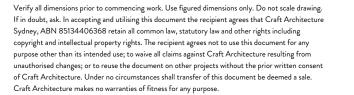


CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102




REVISIONS 16/11/2023 1/12/2023 8/12/2023


Pre-DA Issue Preliminary DA Issue DA Issue

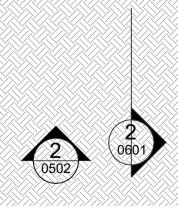


SITE BOUNDARY

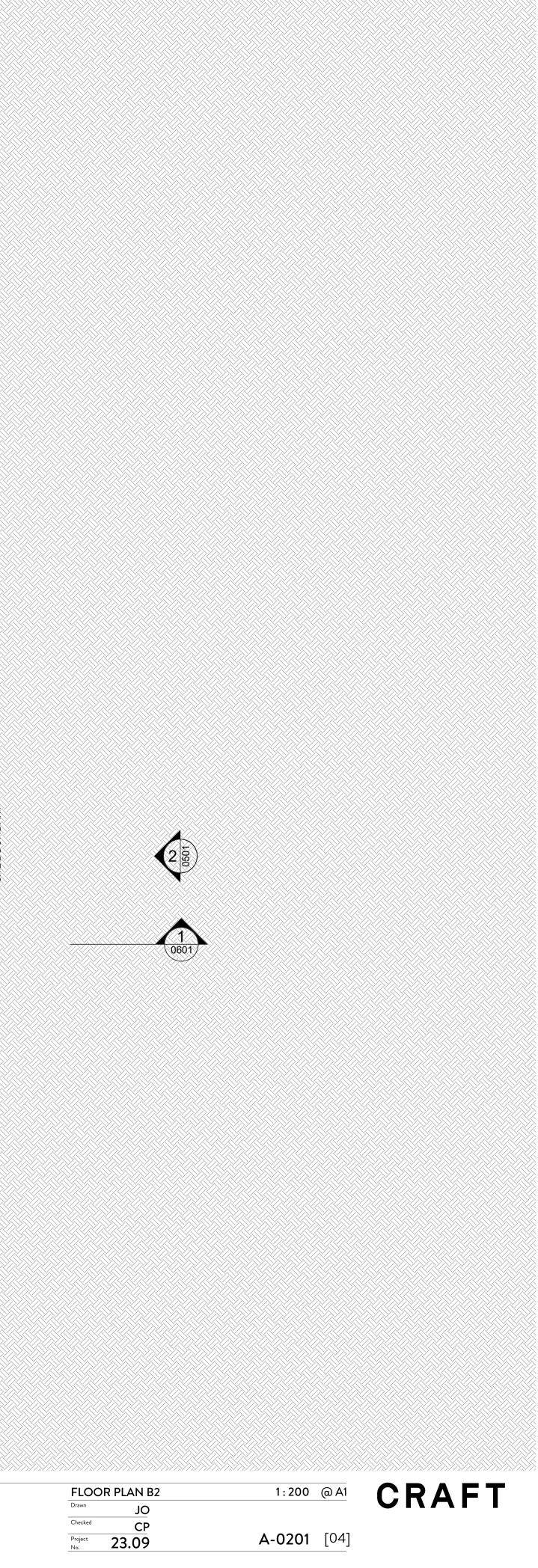
CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

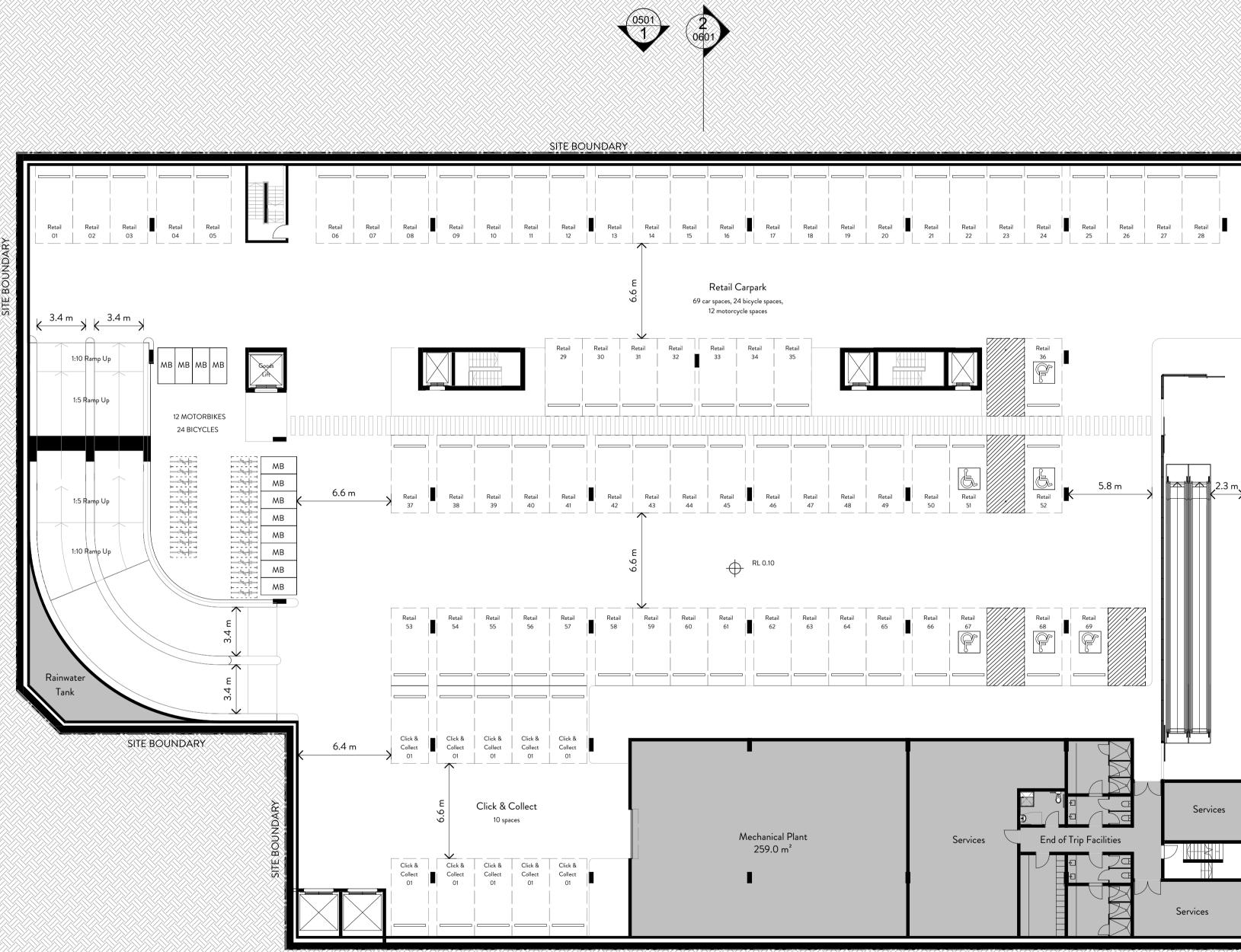
(1)

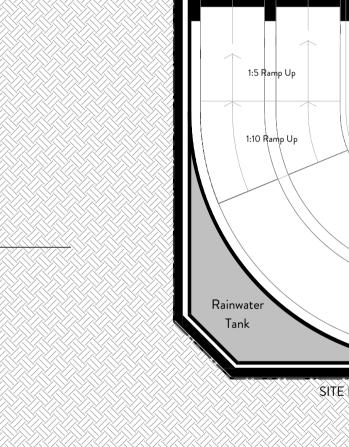
1 0601


 O1
 19/10/2023

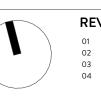
 02
 16/11/2023


 03
 1/12/2023


 04
 8/12/2023


Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

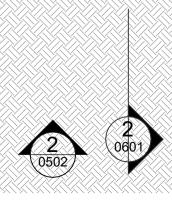
DEVELOPED BY BRONXX

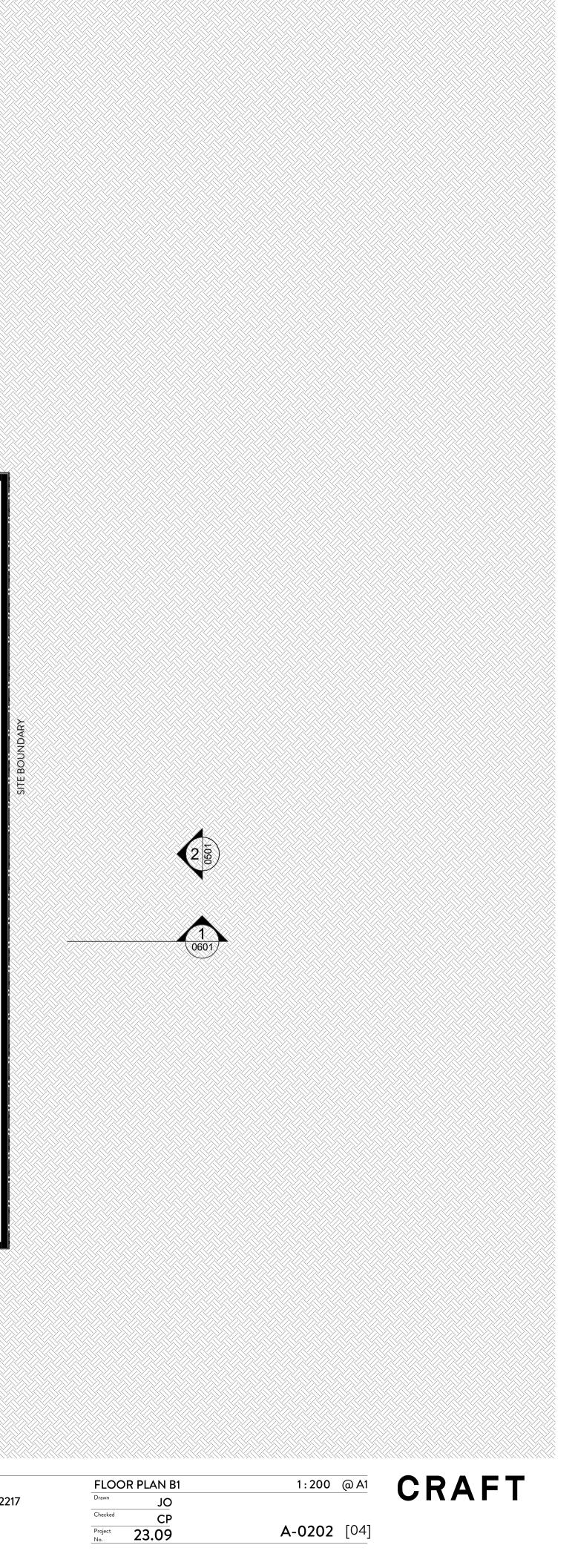


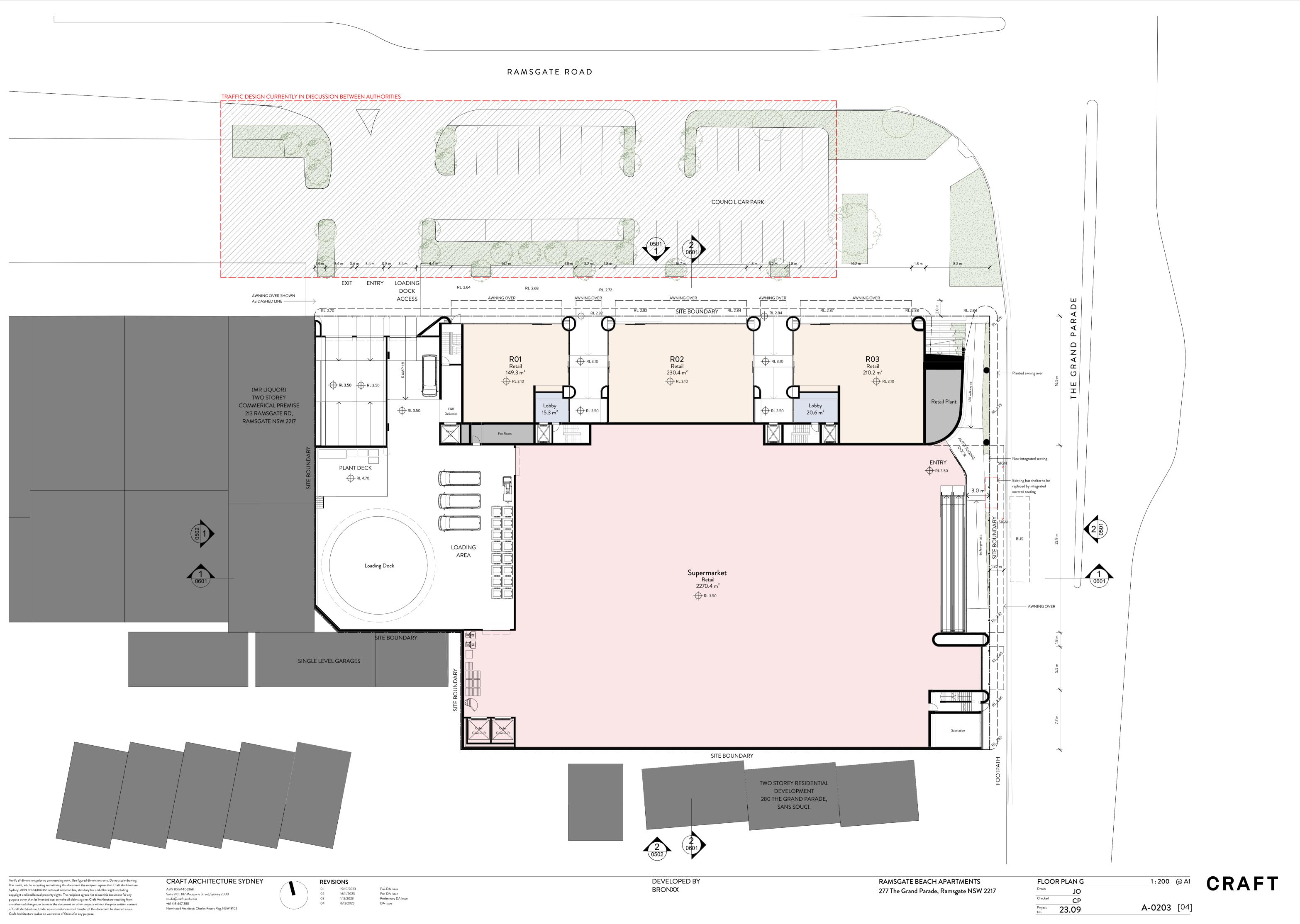
Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

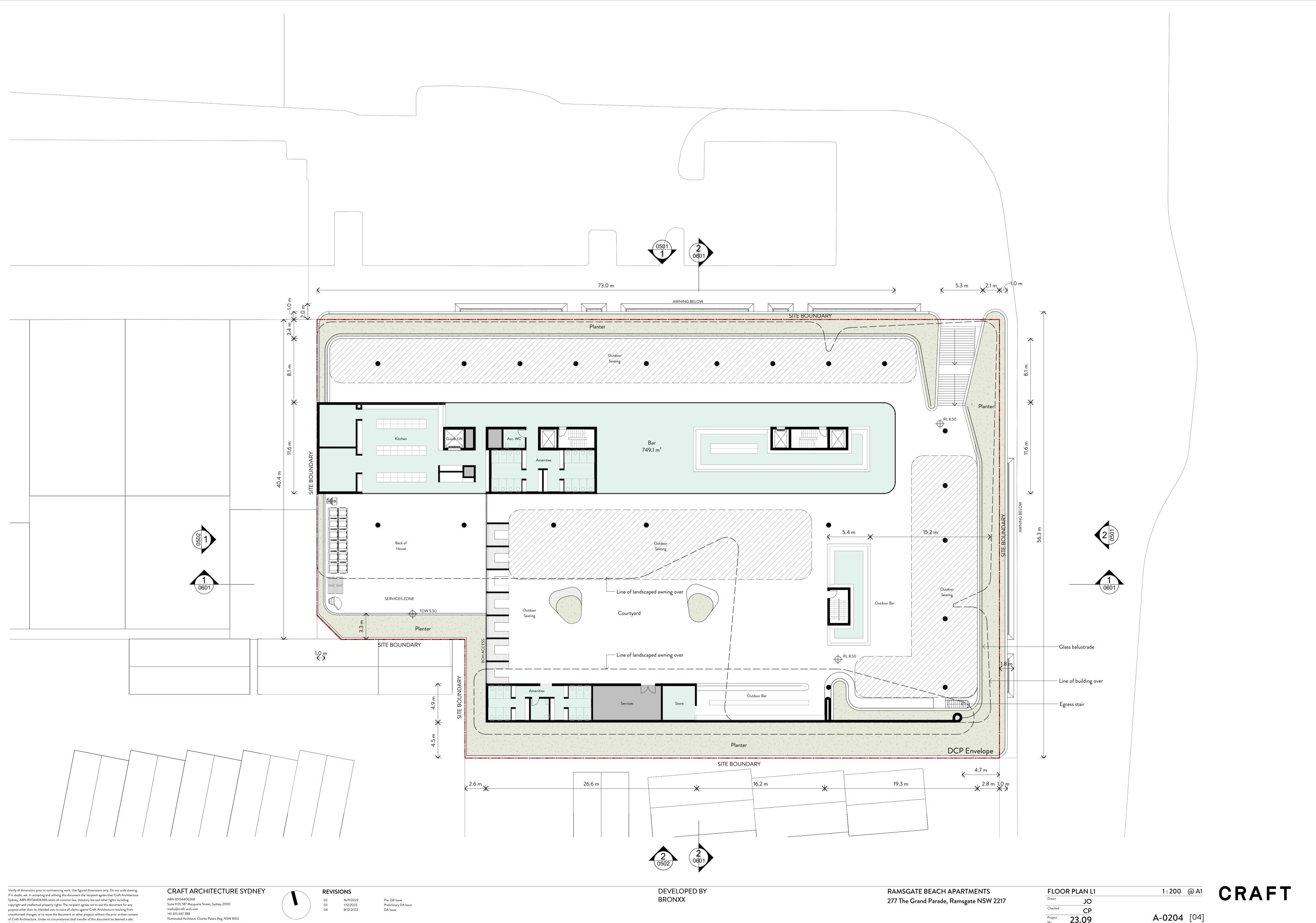
CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

1 205


1 0601



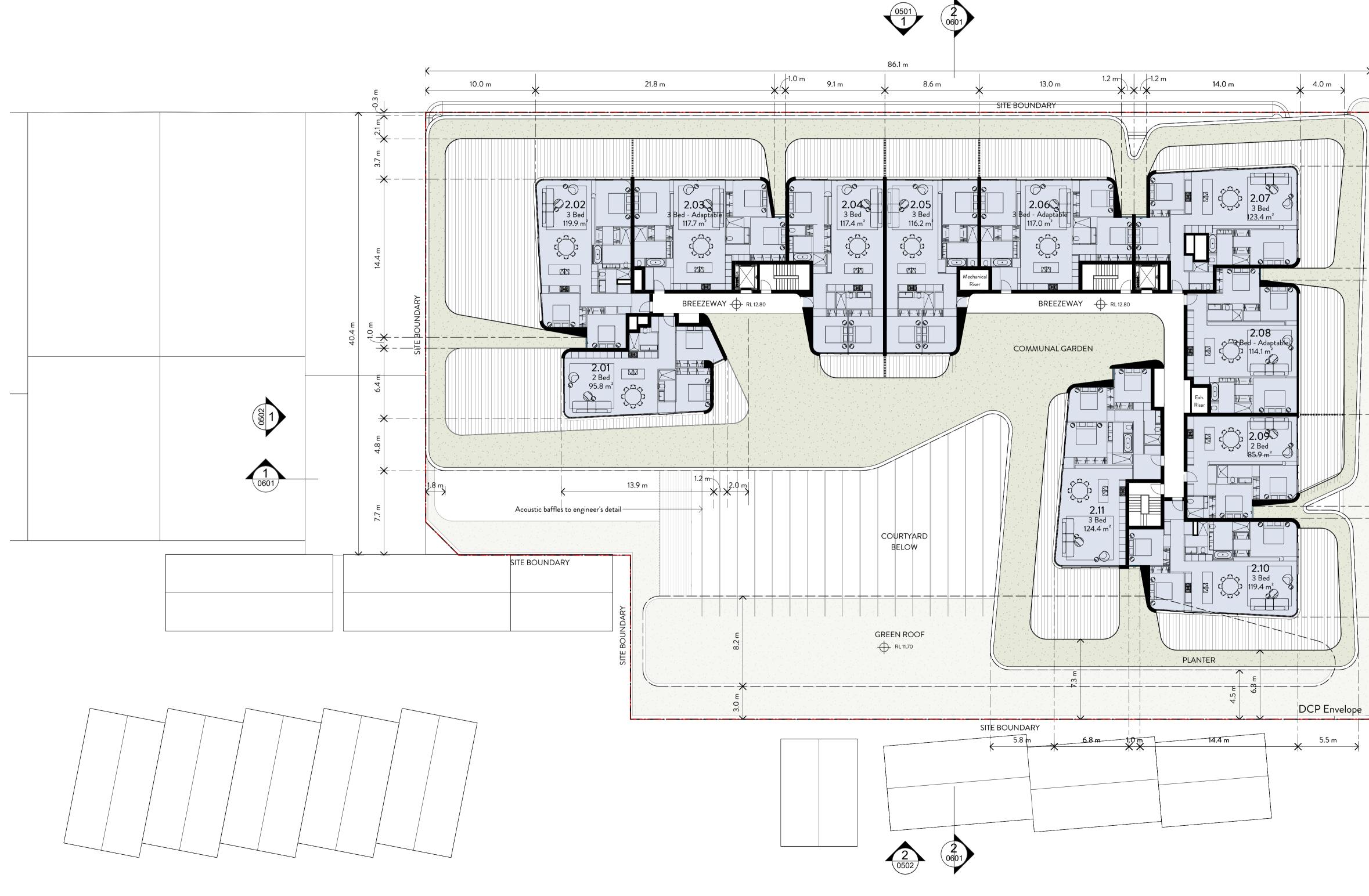

REVISIONS 19/10/2023 16/11/2023 1/12/2023 8/12/2023


Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

SITE BOUNDARY

+61 415 447 388

Craft Architecture makes no warranties of fitness for any purpose.


Nominated Architect: Charles Peters Reg. NSW 8102

CP

23.09

Project No.

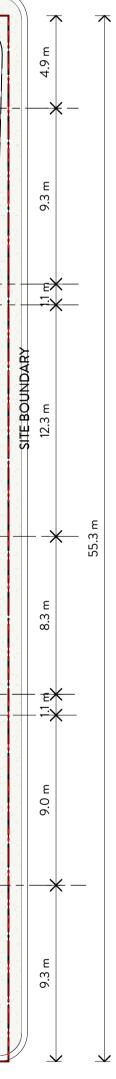
A-0204 [04]

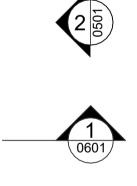
Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale.

Craft Architecture makes no warranties of fitness for any purpose.

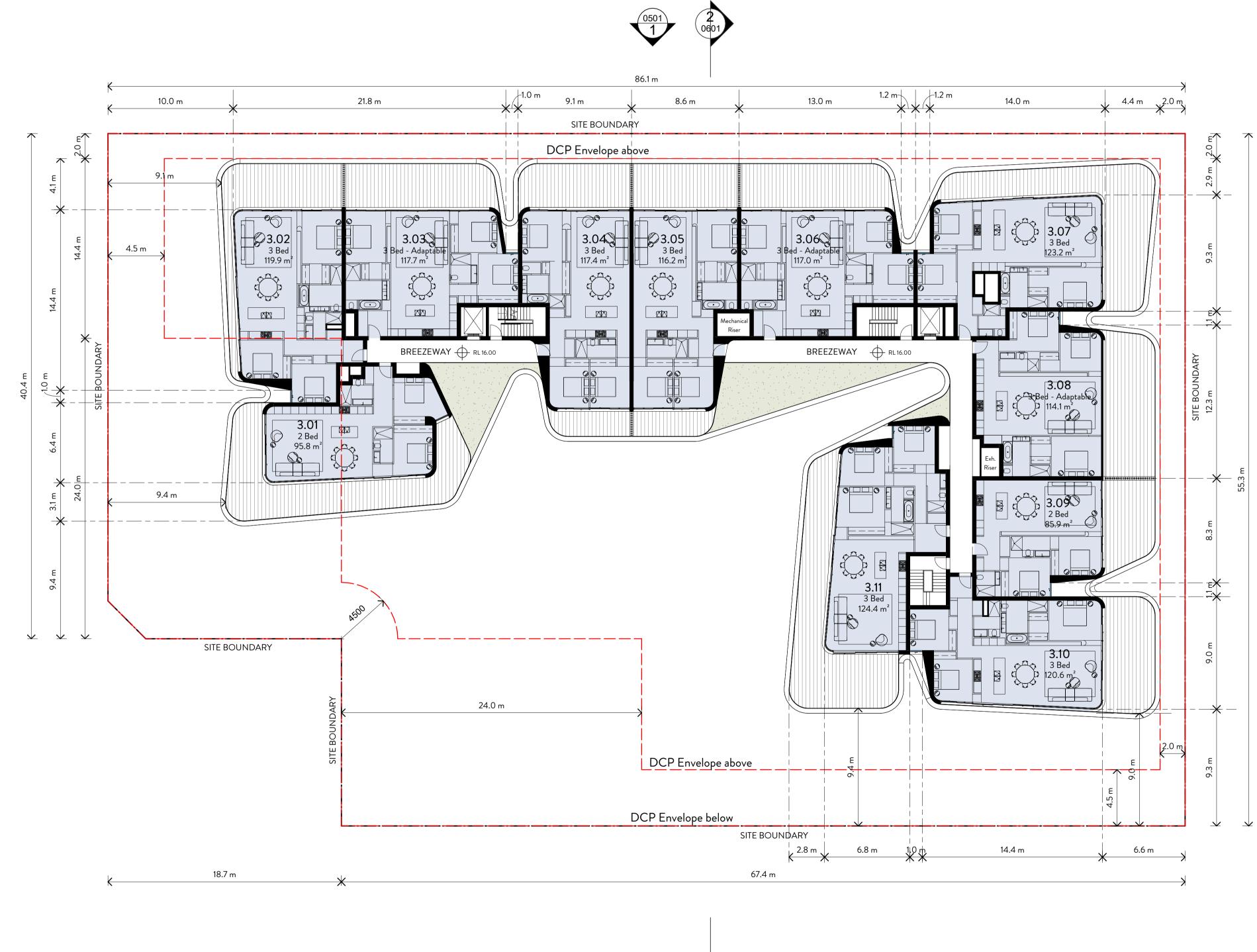
CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000

studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102
 01
 19/10/2023


 02
 16/11/2023

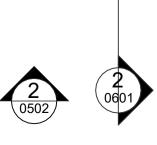

 03
 1/12/2023

 04
 8/12/2023

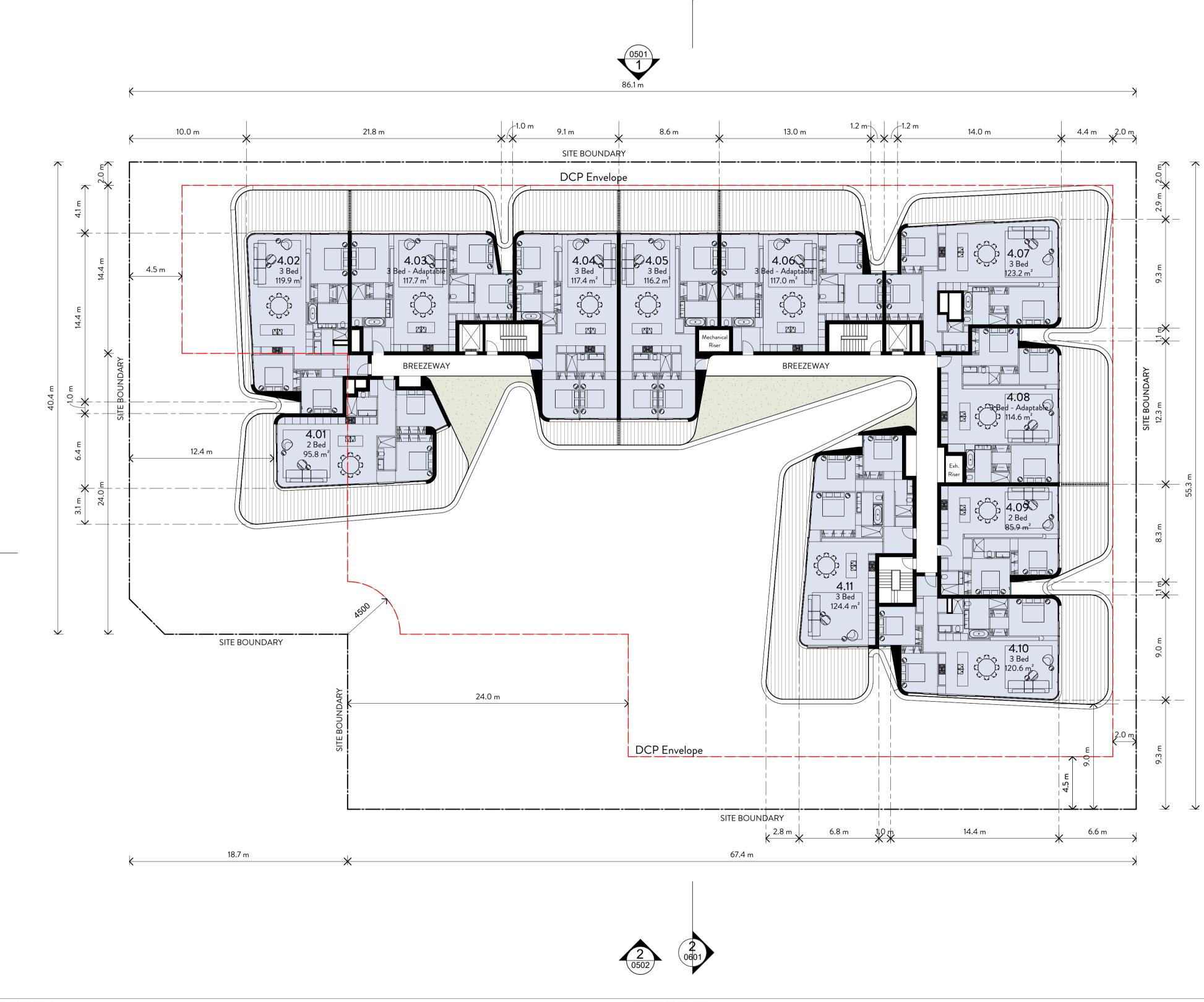

REVISIONS

Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

	FLOOR PLAN L2	1:200 @A1	CRAFT
2217	Drawn	· · · ·	
	Checked CP		
	Project 23.09	A-0205 [04]	


Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. Verity all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102


02 03 04

REVISIONS 19/10/2023 16/11/2023 1/12/2023 8/12/2023

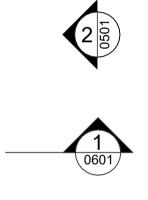
Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

	FLOOR PLAN L3	1:200 @ A1	CRAFT
2217	Drawn JO		
	Checked CP		
	Project 23.09	A-0206 [04]	

2 0601

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose. CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

 REVISIONS


 01
 19/10/2023

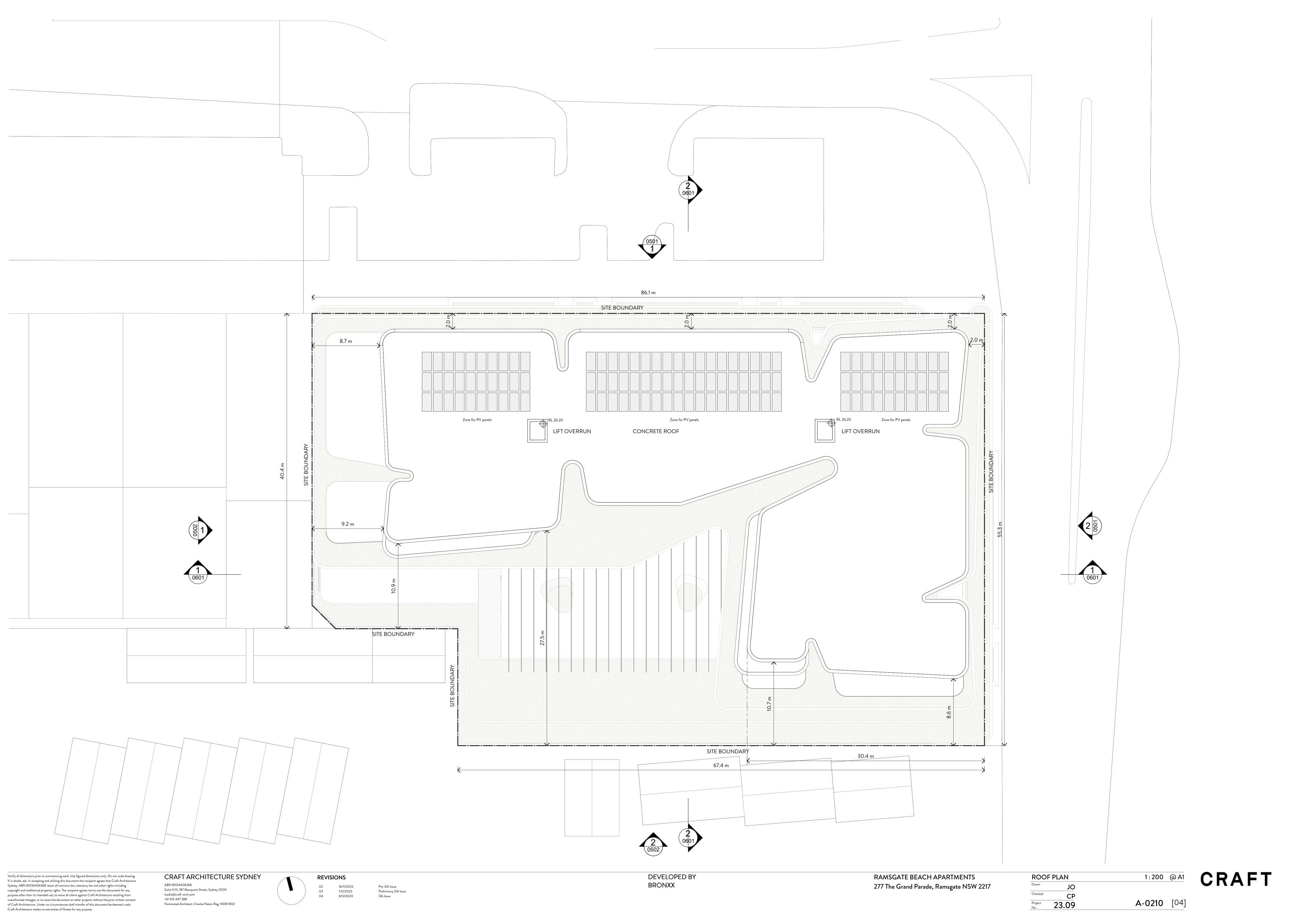
 02
 16/11/2023

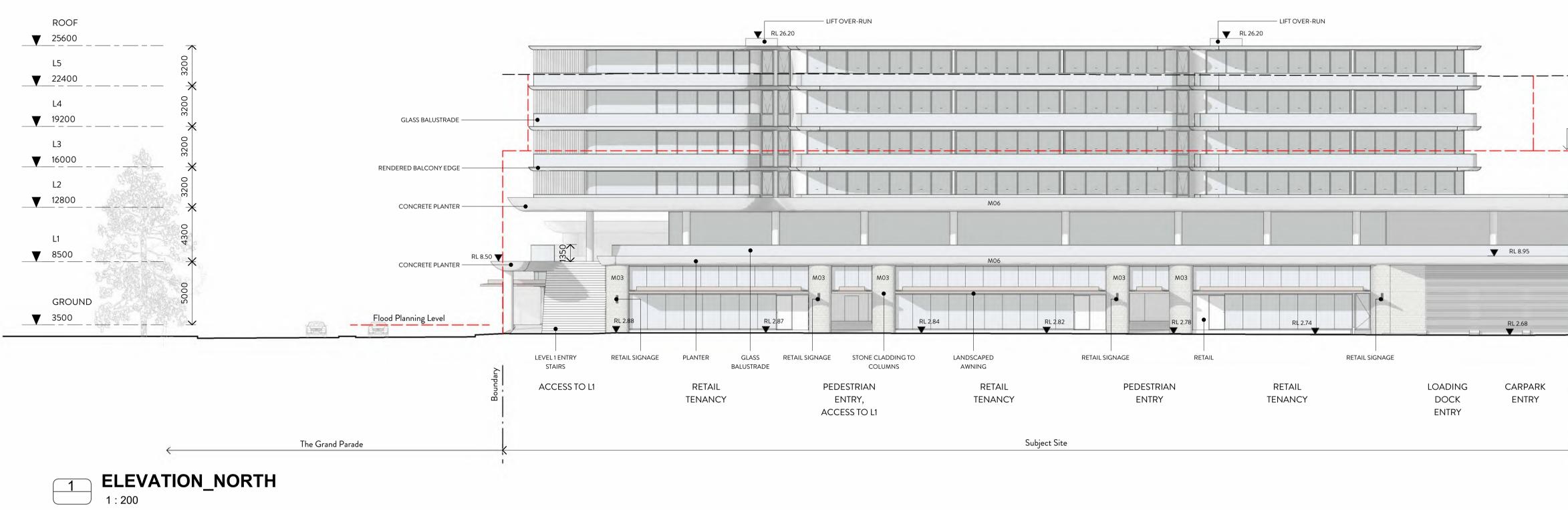

 03
 1/12/2023

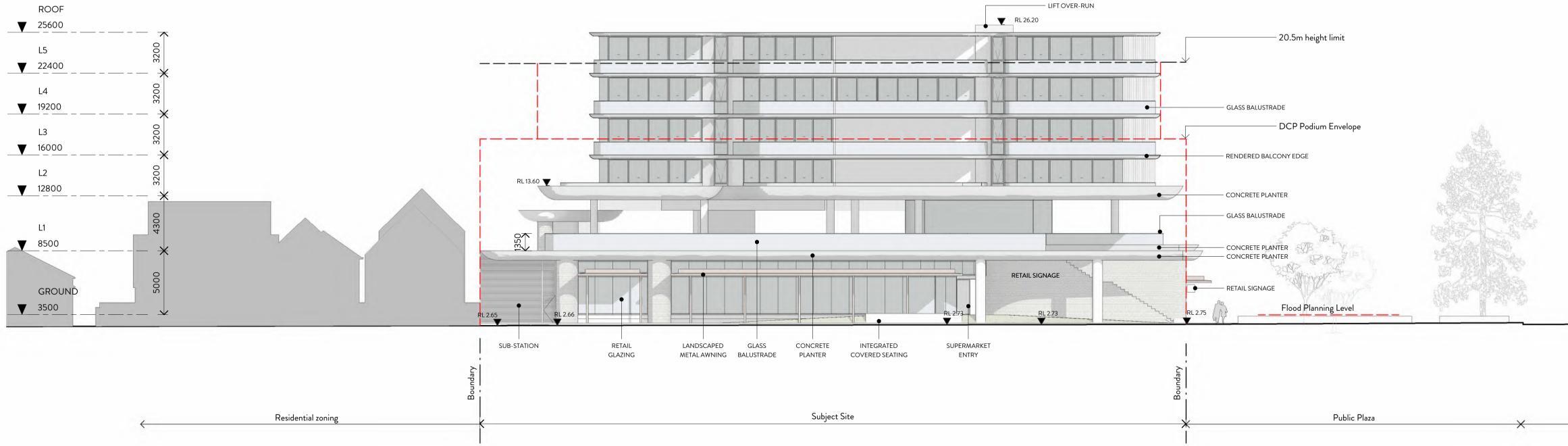
 04
 8/12/2023

Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

	FLOOR PLAN L4	1:200 @A1 CRAF1	
2217	Drawn JO		1
	Checked CP		
	Project 23.09	A-0207 [04]	




Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose. CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102 REVISIONS
01 19/10/2
02 16/11/2
03 11/12/20
04 8/12/20


19/10/2023 Prr 16/11/2023 Prr 1/12/2023 Prr 8/12/2023 DA

Pre-DA Issue Pre-DA Issue Preliminary DA Issue DA Issue

	FLOOR PLAN L5	1:200 @ A1	CRAFT
2217	Drawn JO	<u> </u>	
	CP Project No. 23.09	A-0208 [04]	

TRAVERTINE SILVER

M02 -GRANITE PAVING

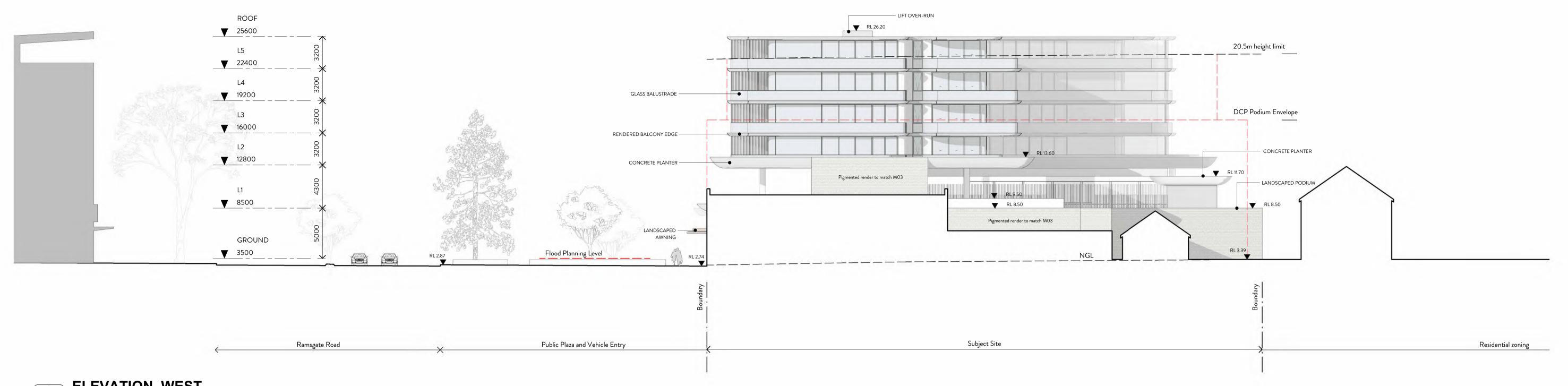
LIGHT SANDSTONE CLADDING

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. Verity all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134400368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

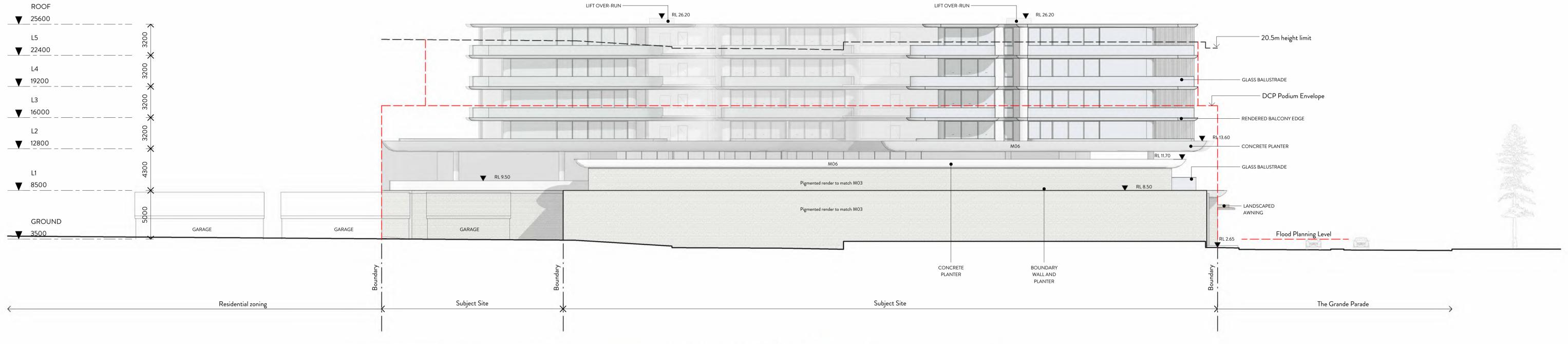
REVISIONS 19/10/2023 01 04 8/12/2023

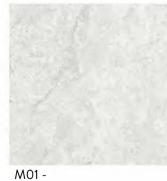
Pre-DA Issue DA Issue


M04 -ALUMINIUM GLAZING SYSTEMS (DARK BRONZE ANODIZED FINISH)

M05 DARK BRONZE ANODIZED OFF-WHITE CONCRETE FINISH

 /	20.5m height limit DCP Podium Enve						
RL 13.60	.74	Pharmacy and F	Restaurant		Medic	al Centre	
	Ramsgate Road			Multi-reside	ential Develo	pments	

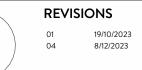

	ELEVATIONS SHEET 1	1:200 @A1	CRAFT
2217	Drawn JO		
	Checked CP		
	Project 23.09	A-0501 [04]	



ELEVATION_WEST 1:200

2 **ELEVATION_SOUTH** 1:200

TRAVERTINE SILVER

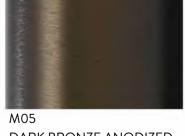

GRANITE PAVING

M03 -LIGHT SANDSTONE CLADDING

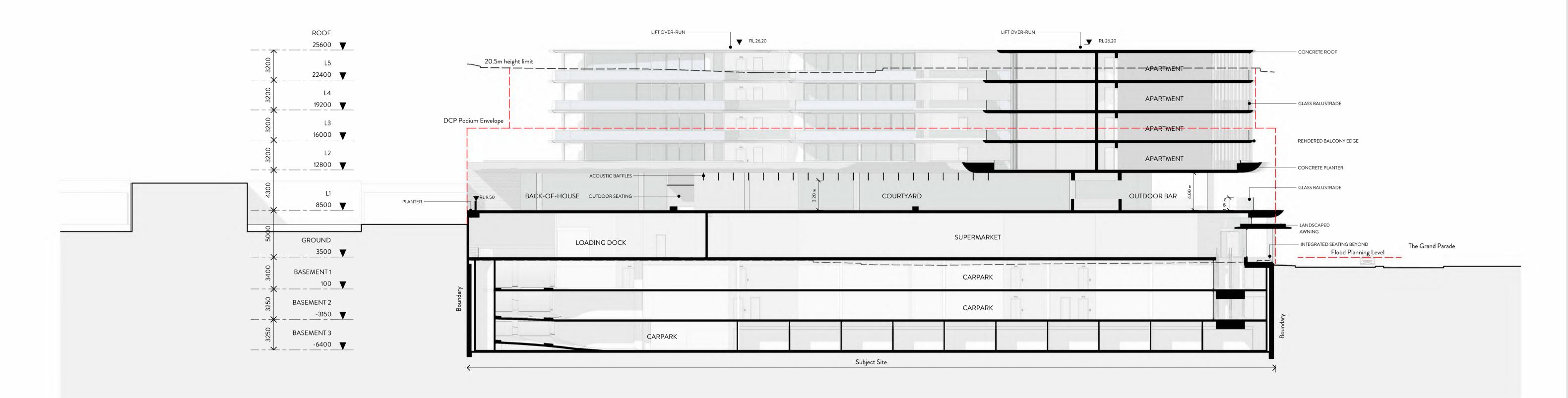
Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. Verity all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134400368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale.

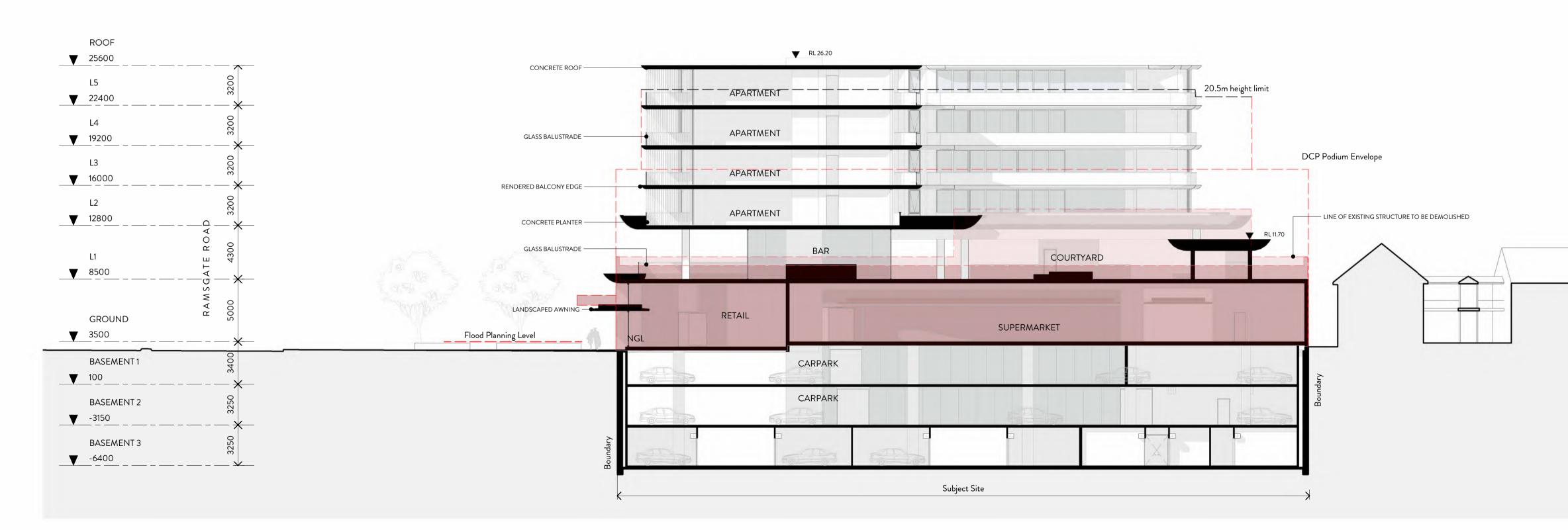
Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102



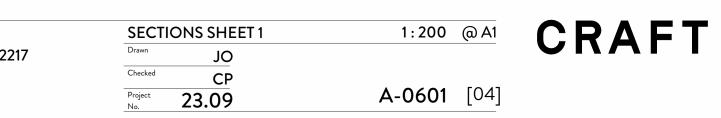
Pre-DA Issue DA Issue


M04 -ALUMINIUM GLAZING SYSTEMS (DARK BRONZE ANODIZED FINISH)

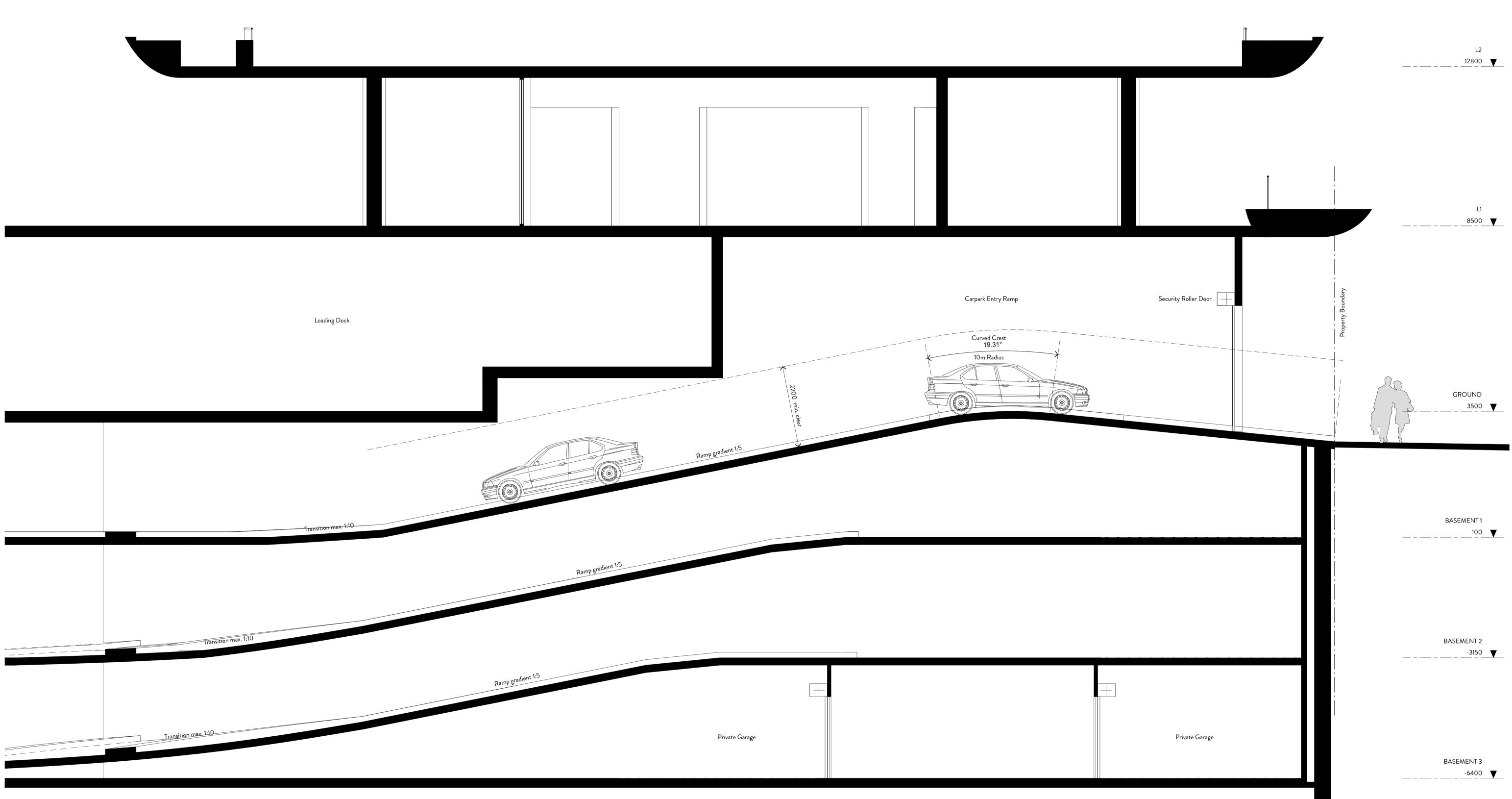

DARK BRONZE ANODIZED OFF-WHITE CONCRETE FINISH

	ELEVATIONS SHEET 2	1:200 @A1	CRAFT
2217	Drawn JO		
	Checked CP		
	Project 23.09	A-0502 [04]	

SITE SECTION_NORTH SOUTH 2 1 : 200

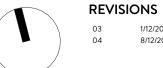

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale.

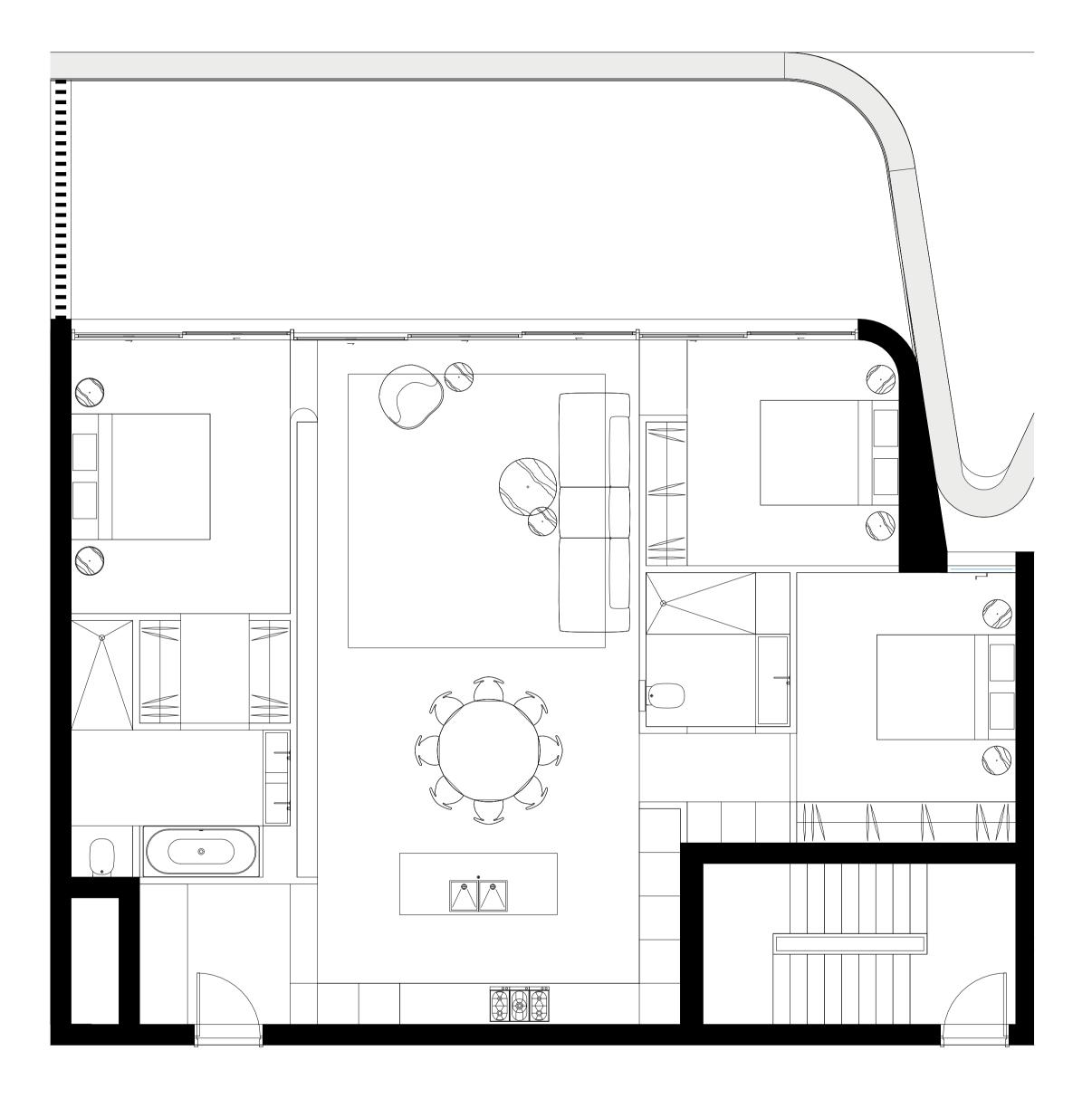
Craft Architecture makes no warranties of fitness for any purpose.


CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

REVISIONS 03 04

1/12/2023 8/12/2023

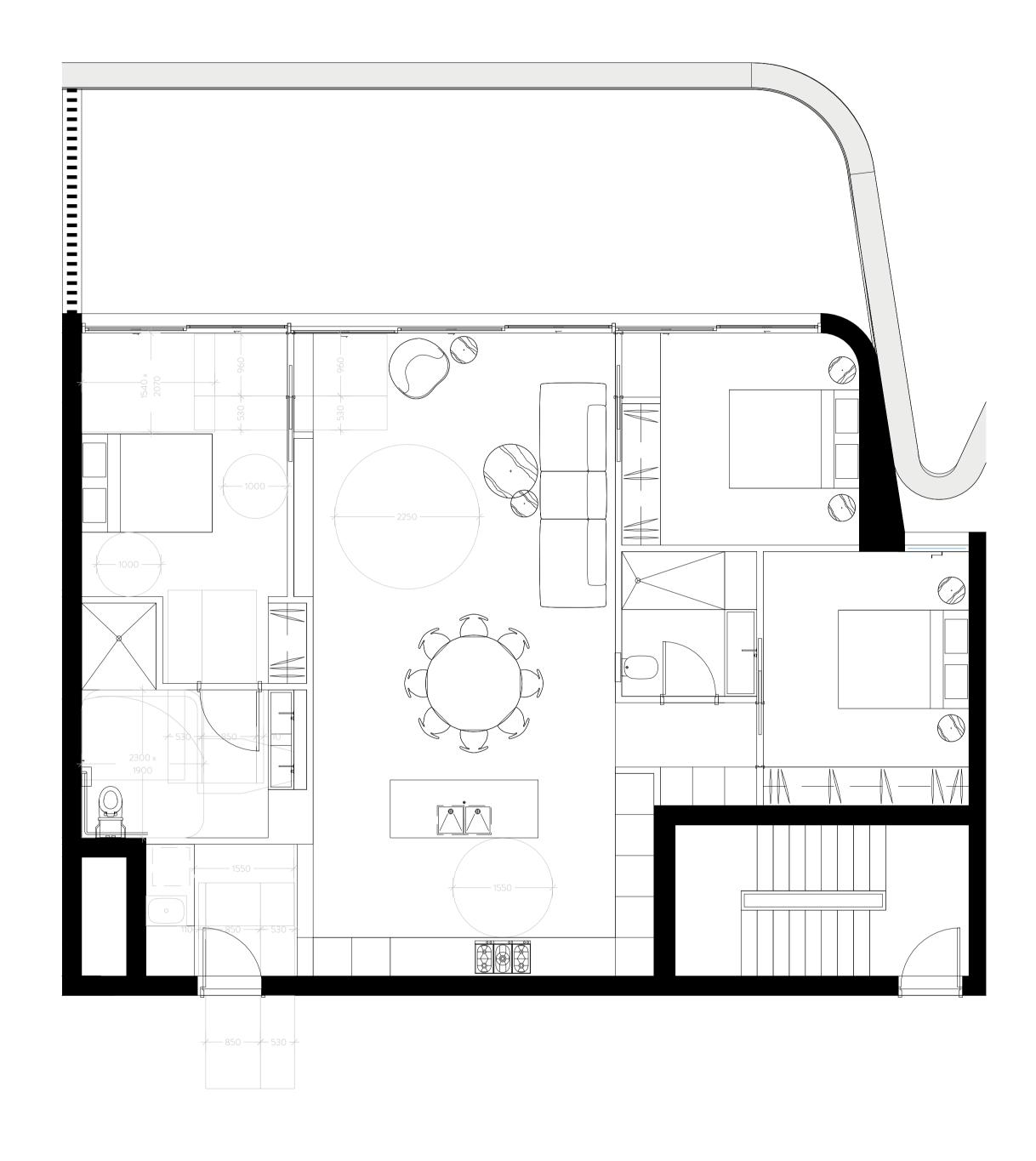

Loading Dock


Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing, If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

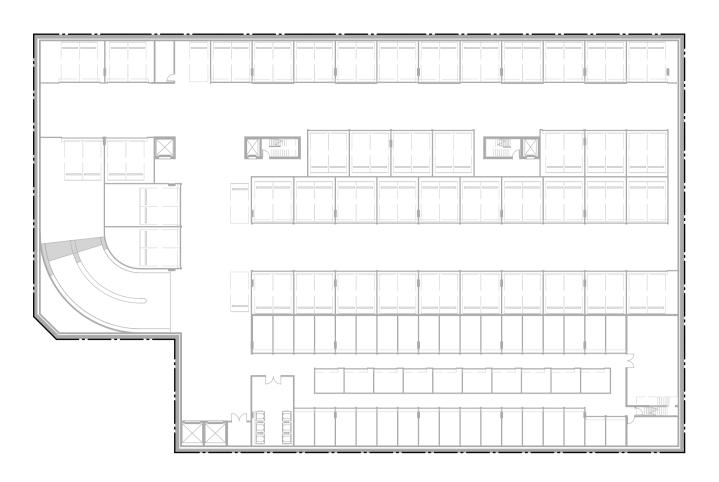
03 1/12/2023 04 8/12/2023

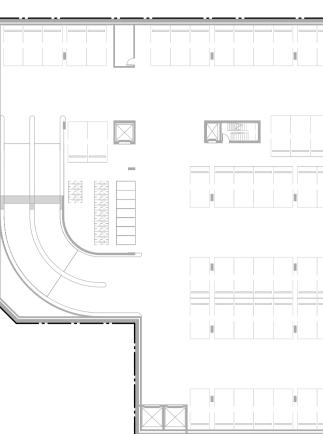
	SECTIONS SHEET 2	1 : 50 @ A1	CRAFT
2217	Drawn JO		
	Checked CP		
	Project 23.09	A-0602 [04]	


PRE-ADAPTED LAYOUT

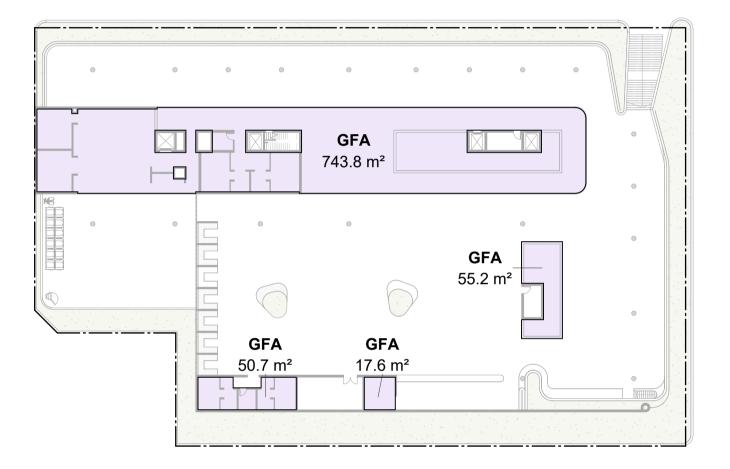
Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing, If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102


REVISIONS 04 8/12/2023


DA Issue

2 POST-ADAPTED LAYOUT



BASEMENT 2

L2

BASEMENT 3

L1

L5

of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale.

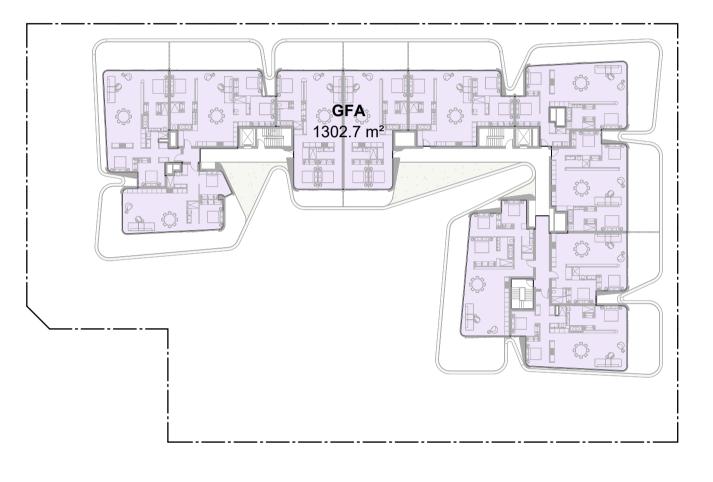
Craft Architecture makes no warranties of fitness for any purpose.

ROOF

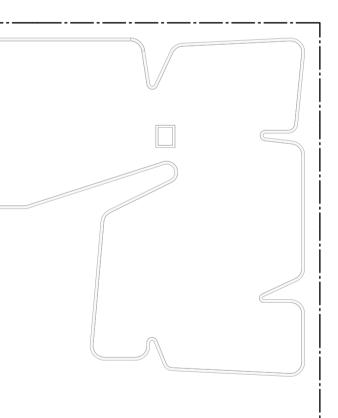

CRAFT ARCHITECTURE SYDNEY Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture ABN 85134406368 Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388

Nominated Architect: Charles Peters Reg. NSW 8102

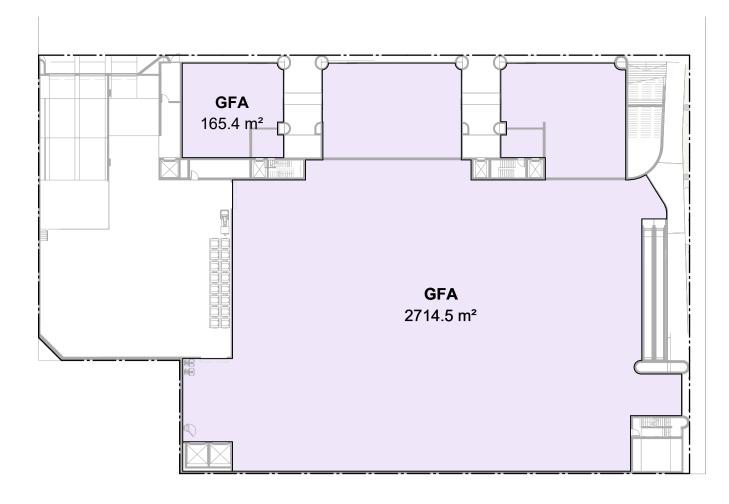
REVISIONS 19/10/2023 1/12/2023 8/12/2023 01 03 04


Pre-DA Issue Preliminary DA Issue DA Issue

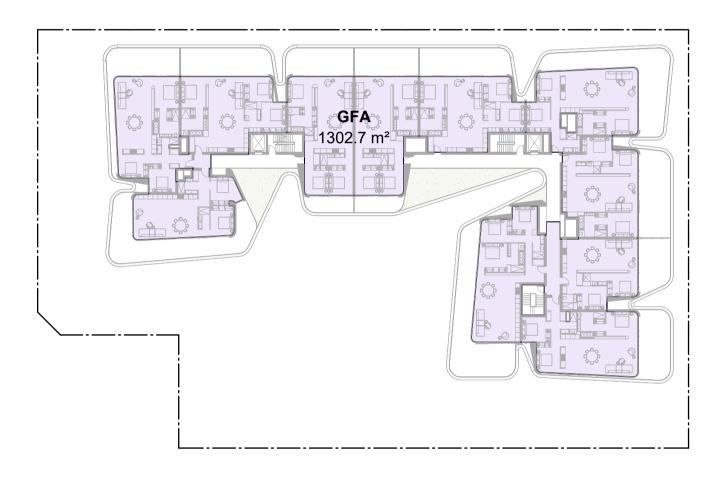
			3			
8				I		



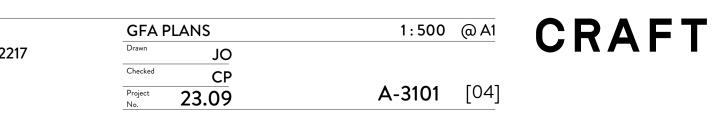
BASEMENT 1

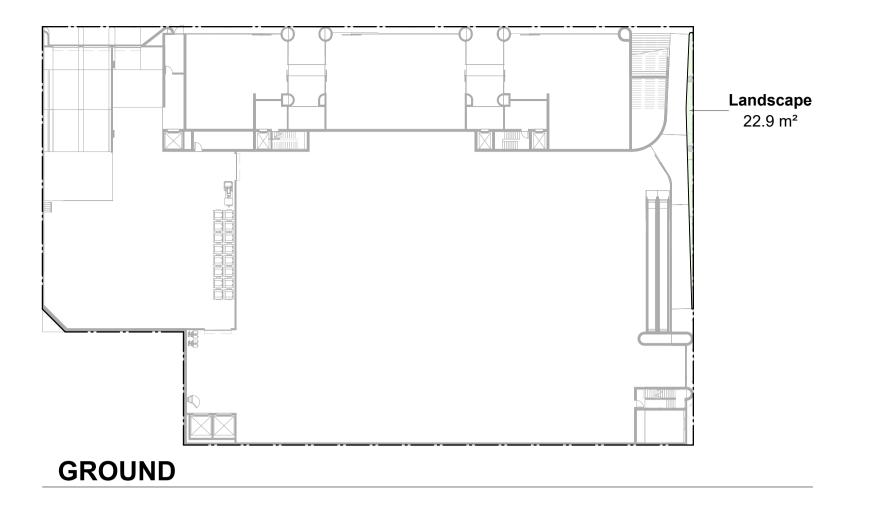


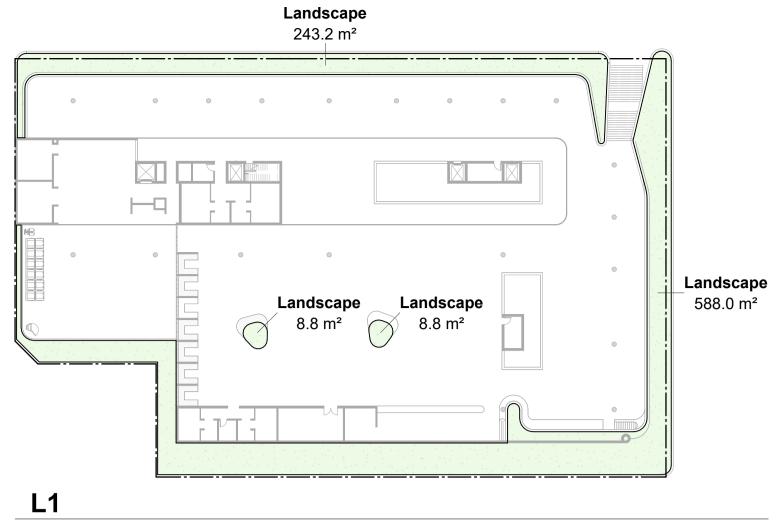
L3

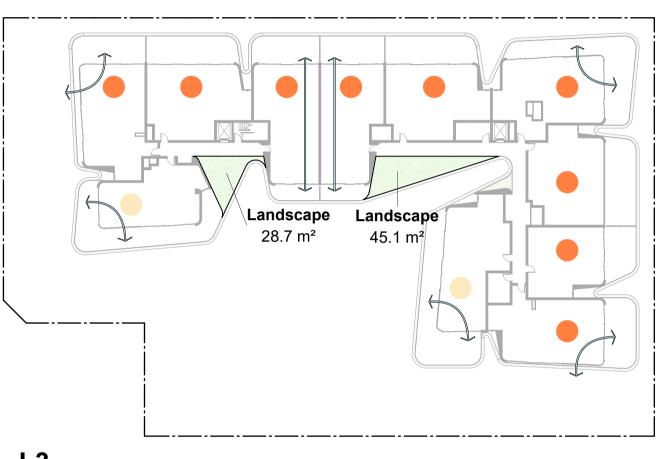


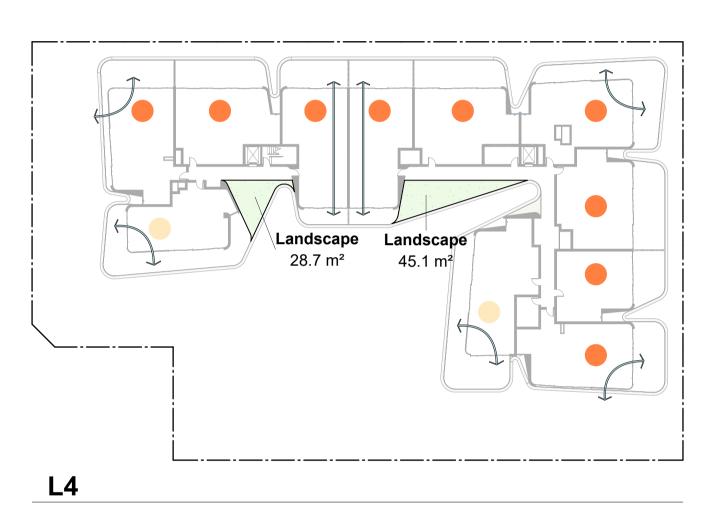
Level	Area
GROUND	2879.9 m ²
L1 L2	867.4 m² 1302.7 m²
L3 L4	1302.7 m ² 1302.7 m ²
L4 L5	1302.7 m ²
TOTAL	8958.1 m²


SITE AREA	4,479 m ²
ALLOWABLE GFA	8,958 m ²
ALLOWABLE FSR	2:1
PROPOSED GFA	8,958 m ²
PROPOSED FSR	2:1
APARTMENTS	44 APARTMENTS




GROUND




L4

L3

LANDSCAPED AREA	
Level	Area
GROUND	22.9 m²
L1	848.9 m²
L2	1208.2 m²
L3	73.8 m²
L4	73.8 m²
L5	73.8 m²
Total	2301.4 m²

SOLAR ACCESS

Direct sunlight to living areas and private open space in mid-winter between 9am and 3pm

3+ hours	38 apartments (86%)
2 hours	6 apartments (14%)

CROSS-VENTILATION

Natural cross-ventilation

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing.

Verity all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368

28 apartments (64%)


Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

DA Issue

	LANDS	CAPE, SOLAR, C	ROSS-FLOW 1:500	@ A1	CRAFT
7	Drawn	MO			
	Checked	CP			
	Project No.	23.09	A-3110	[04]	

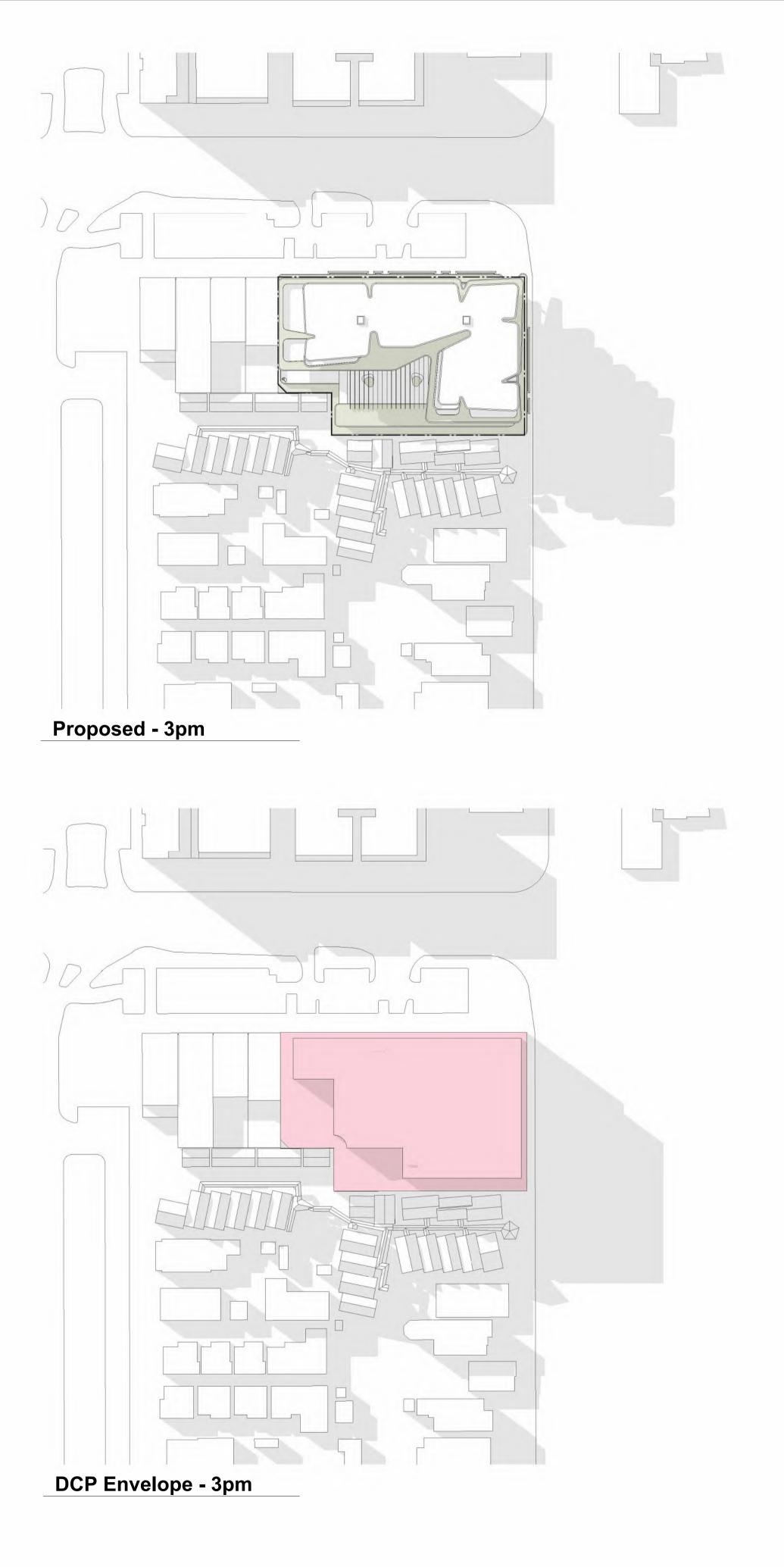
Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing, If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

 O3
 1/12/2023

 04
 8/12/2023

5	SHADOW DIAGRAMS - SHEET 1	1:1000 @A1	CRAFT
V 2217	Drawn JO Checked CD		
	Project 23.09	A-3201 [04]	


Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing. Verity all dimensions prior to commencing work. Use figured dimensions only. Use not scale drawing. If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale.

Craft Architecture makes no warranties of fitness for any purpose.

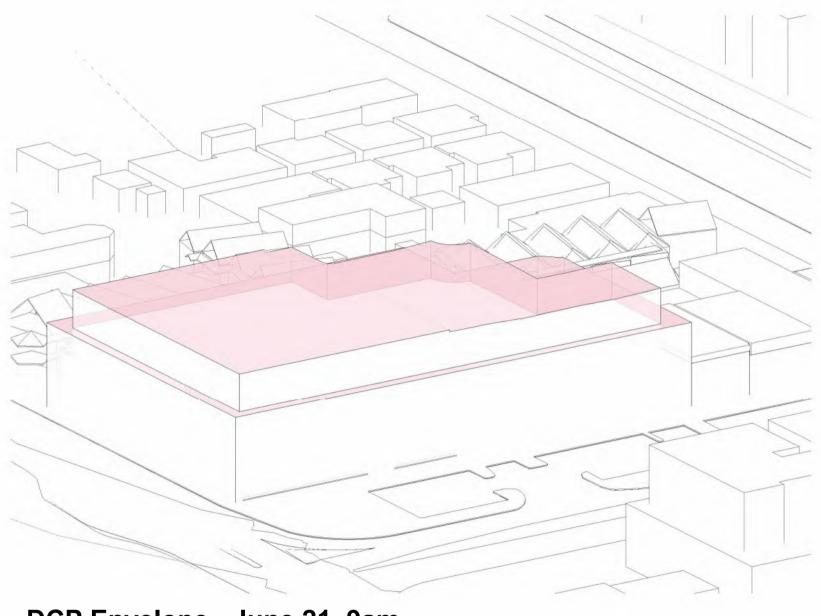
CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

REVISIONS 1/12/2023 8/12/2023 03 04

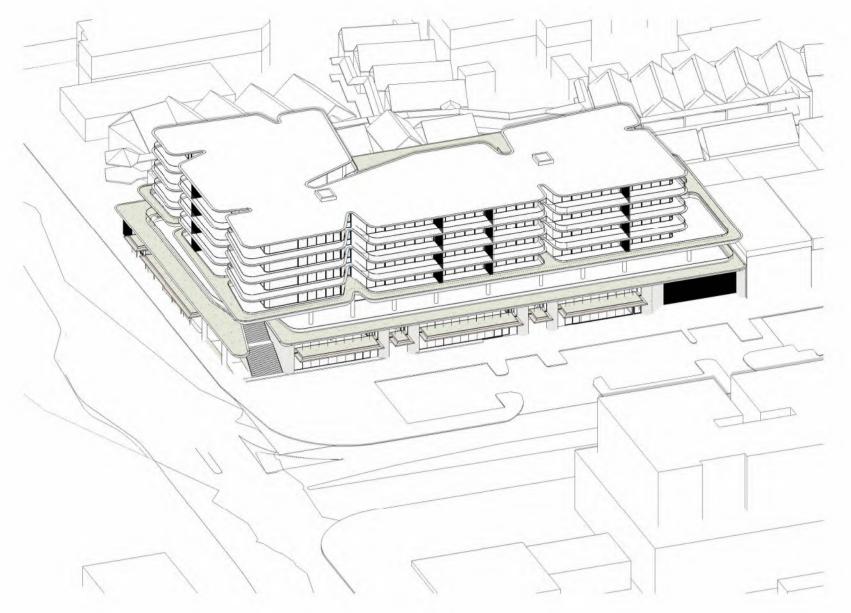
	SHADOW DIAGRAMS - SHEET 2	1:1000 @A1	CRAFT
2217	Drawn JO Checked CP		UNALL
	Project 23.09	A-3202 [04]	

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing, If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102


 O3
 1/12/2023

 04
 8/12/2023


	SHADOW DIAGRAMS - SHEET 3	1:1000 @A1	CRAFT
.17	Drawn JO Checked CD		
	Project 23.09	A-3203 [04]	

Proposed - June 21, 9am

Verify all dimensions prior to commencing work. Use figured dimensions only. Do not scale drawing, If in doubt, ask. In accepting and utilising this document the recipient agrees that Craft Architecture Sydney, ABN 85134406368 retain all common law, statutory law and other rights including copyright and intellectual property rights. The recipient agrees not to use this document for any purpose other than its intended use; to waive all claims against Craft Architecture resulting from unauthorised changes; or to reuse the document on other projects without the prior written consent of Craft Architecture. Under no circumstances shall transfer of this document be deemed a sale. Craft Architecture makes no warranties of fitness for any purpose.

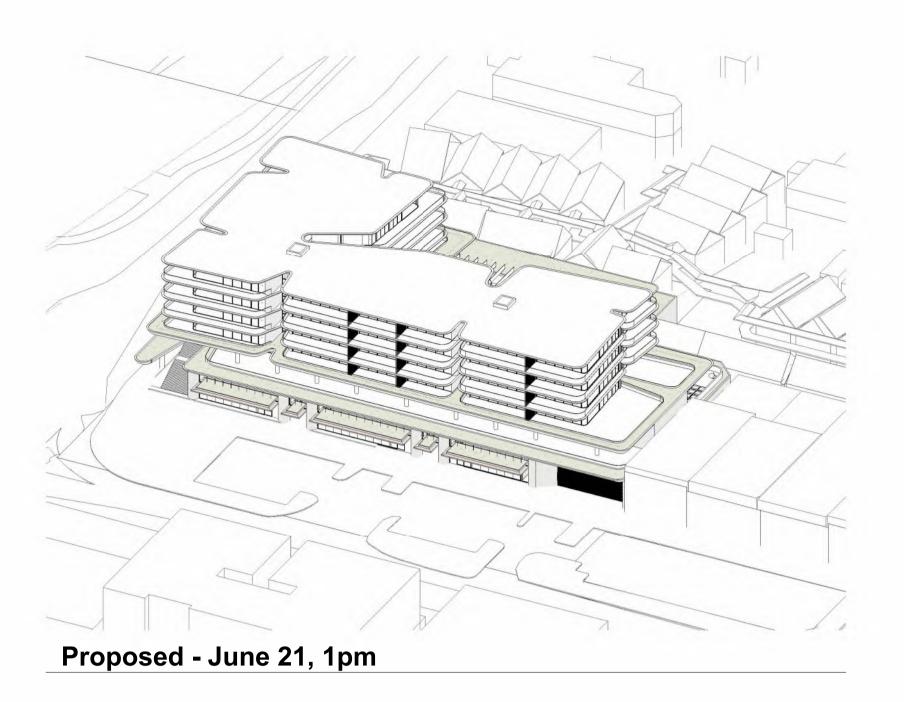
CRAFT ARCHITECTURE SYDNEY ABN 85134406368 Suite 9.01, 187 Macquarie Street, Sydney 2000 studio@craft-arch.com +61 415 447 388 Nominated Architect: Charles Peters Reg. NSW 8102

REVISIONS 04 8/12/2023

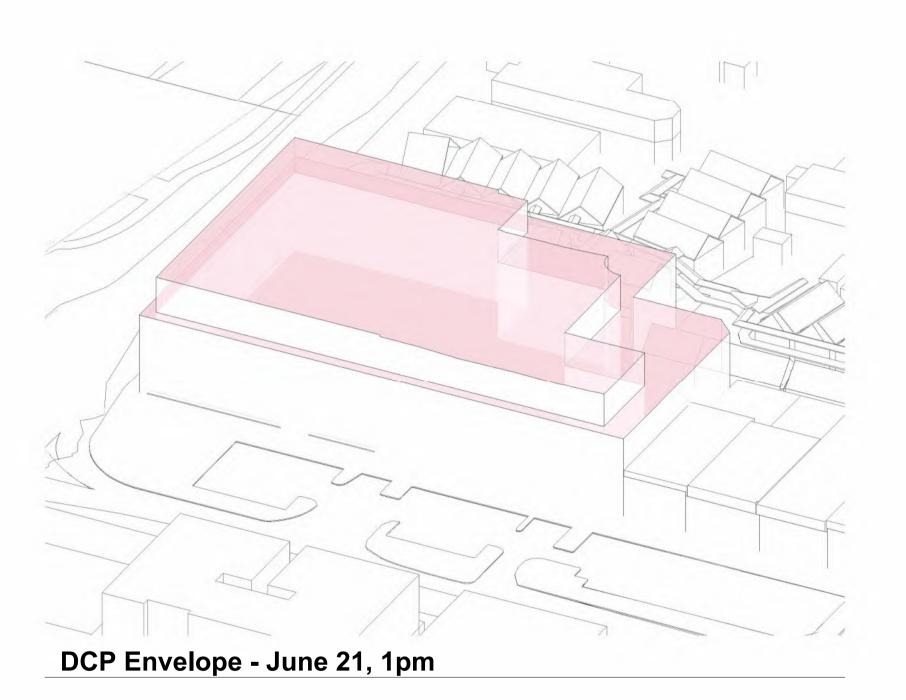
DA Issue

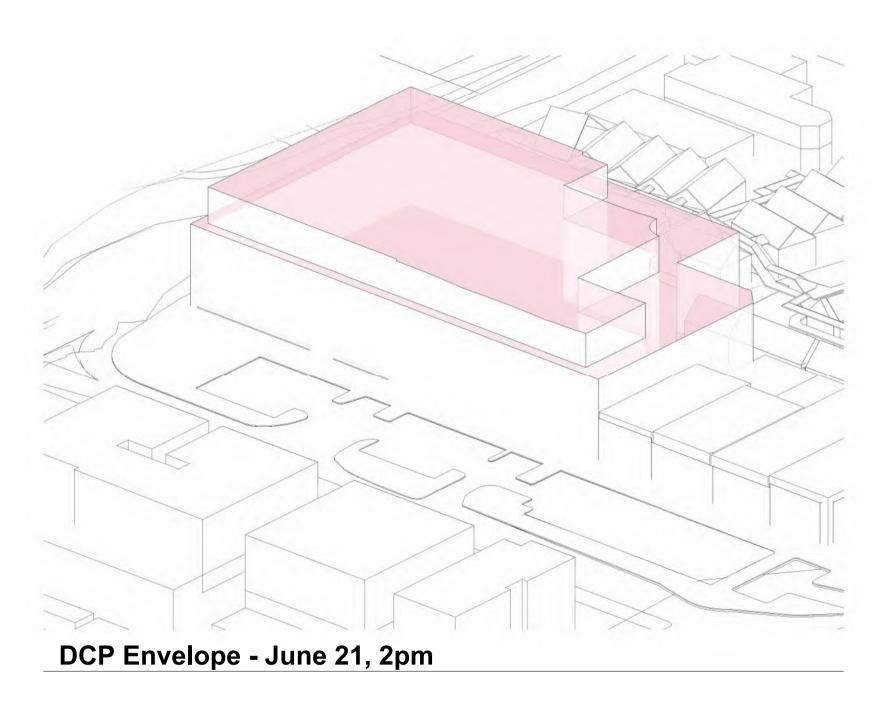
Proposed - June 21, 10am

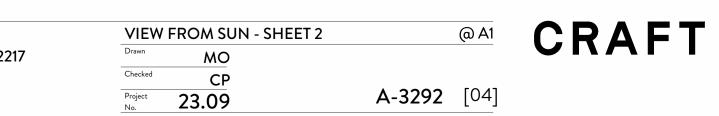
DCP Envelope -

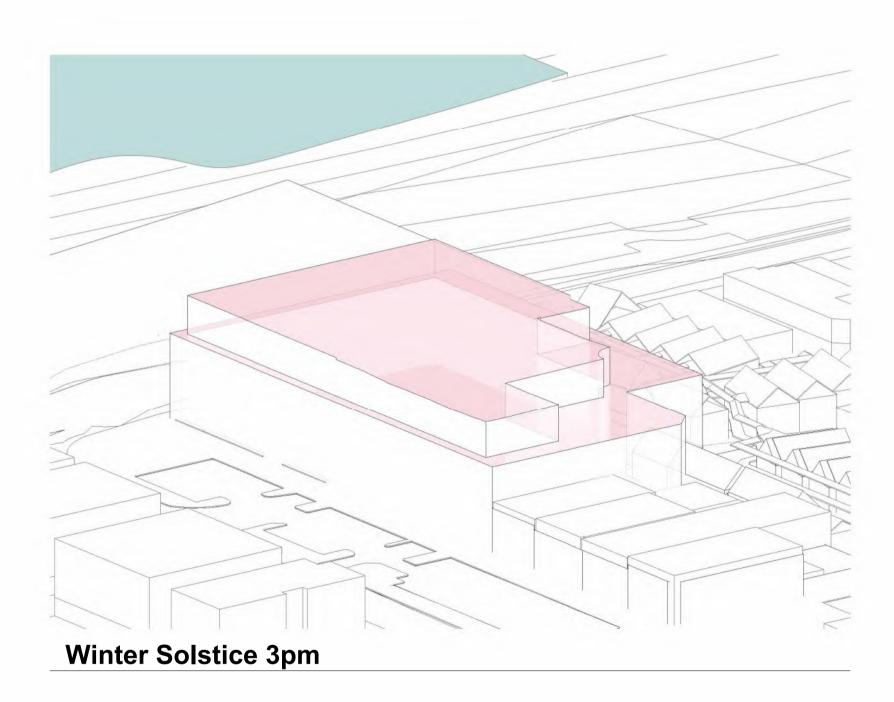

J	une	21,	11am	

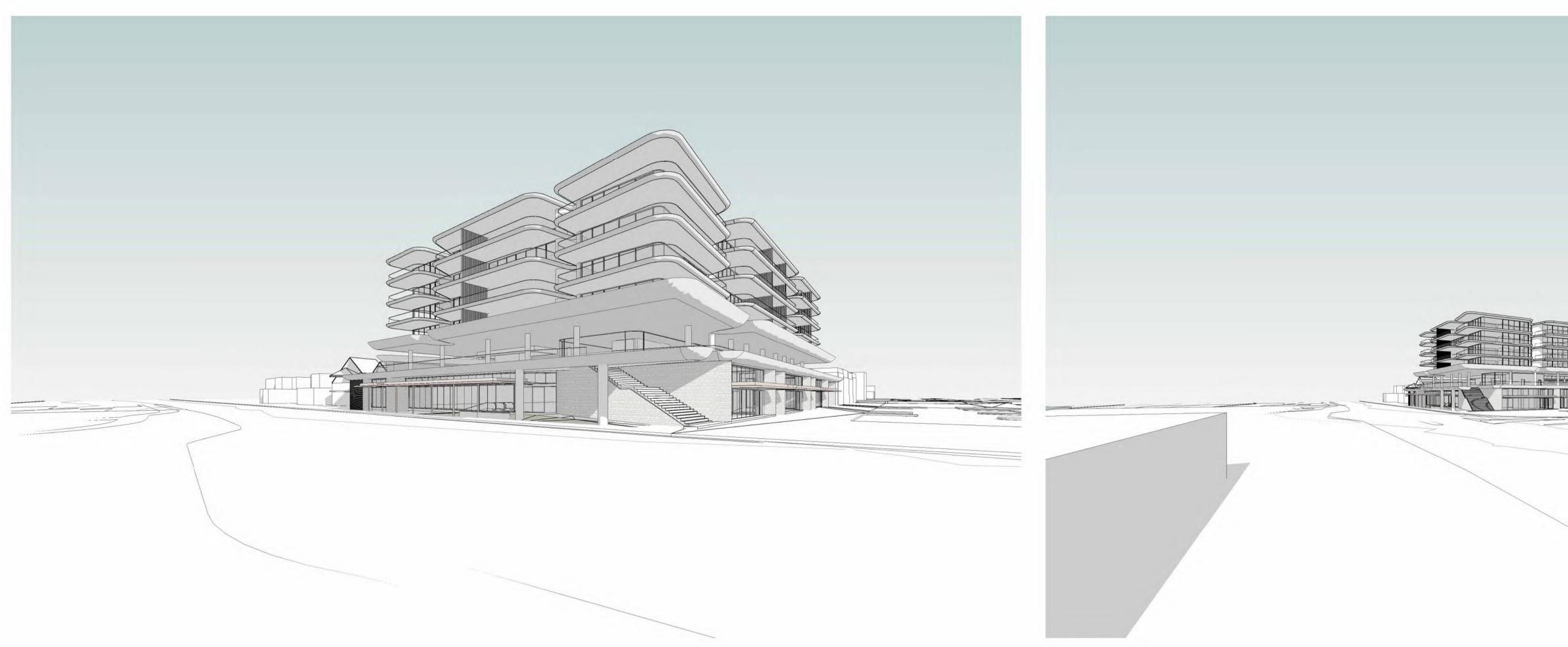
	VIEW FROM SUN - SHEET 1	@ A1	CRAFT
2217	Drawn MO		
	Checked CP		
	Project 23.09	A-3291 [04]	

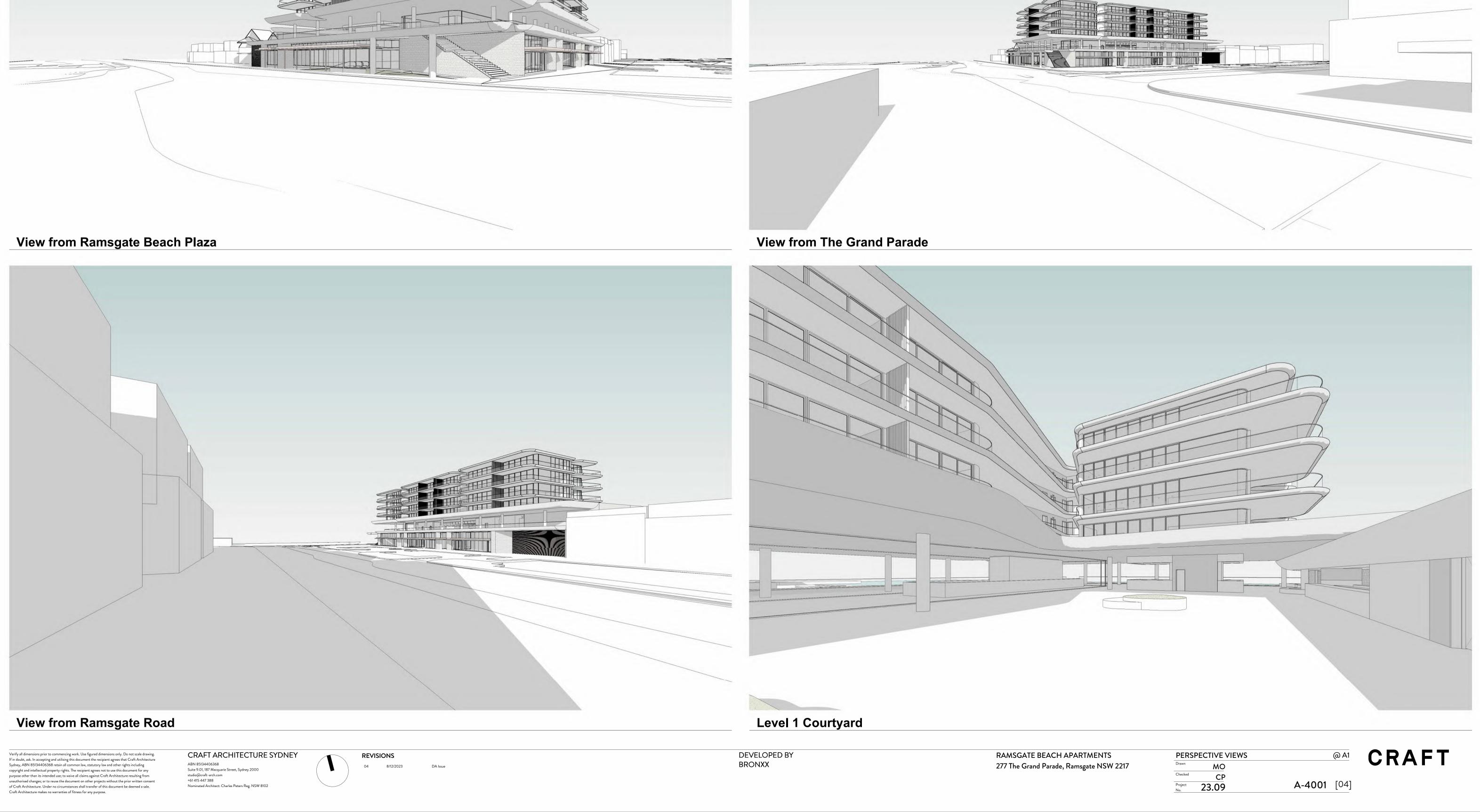



Proposed - June 21, 12pm









	VIEW FROM SUN - SHEET 3	@ A1	CRAFT
2217	Drawn MO		
	Checked CP		
	Project 23.09	A-3293 [04]	

Lotsearch Environmental Risk and Planning Report

Date: 11 Mar 2022 10:27:10 Reference: LS030090 EP Address: 277 The Grand Parade, Ramsgate, NSW 2217

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

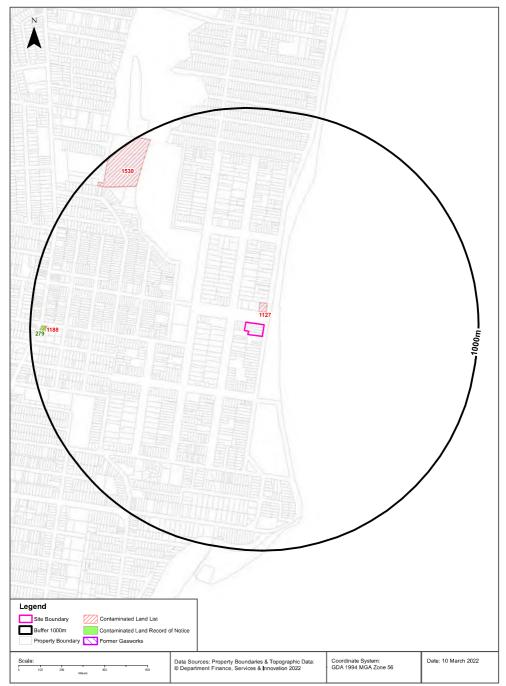
Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	04/01/2022	04/01/2022	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	02/03/2022	09/02/2022	Monthly	1000m	0	1	3
Contaminated Land Records of Notice	Environment Protection Authority	03/03/2022	03/03/2022	Monthly	1000m	0	0	1
Former Gasworks	Environment Protection Authority	02/03/2022	14/07/2021	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	1	2
EPA PFAS Investigation Program	Environment Protection Authority	25/02/2022	14/07/2021	Monthly	2000m	0	1	1
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	03/03/2022	03/03/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	03/03/2022	03/03/2022	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	02/03/2022	02/03/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	03/03/2022	03/03/2022	Quarterly	2000m	0	0	0
PA Other Sites with Contamination Environment Protection Authority sues		16/02/2022	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	03/03/2022	03/03/2022	Monthly	1000m	0	0	0
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	03/03/2022	03/03/2022	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	03/03/2022	03/03/2022	Monthly	1000m	0	3	4
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	2	113	127
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	6	6
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	34	60
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Points of Interest	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	2	34
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Major Easements	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	0	9
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	10/02/2022	31/12/2021	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000m	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	26/10/2020	21/02/2018	Annually	1000m	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000m	1	16	603

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Geological Units 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	2	3	6
Geological Structures 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	1
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annua ll y	1000m	2	2	7
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	07/01/2022	17/12/2021	Monthly	500m	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	3
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	11/03/2022	11/03/2022	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	11/03/2022	11/03/2022	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	11/03/2022	11/03/2022	Monthly	1000m	12	12	13
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/11/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/11/2021	05/11/2021	Monthly	1000m	1	11	47
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	1	1
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	07/01/2022	17/12/2021	Monthly	1000m	0	2	17
Bush Fire Prone Land	NSW Rural Fire Service	07/03/2022	08/12/2021	Weekly	1000m	0	0	0
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment & Heritage	01/03/2017	16/12/2016	As required	1000m	0	2	11
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	24/02/2021	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annua li y	1000m	0	0	0
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	0	0	0
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	08/03/2022	08/03/2022	Weekly	10000m	-	-	-

Site Diagram

277 The Grand Parade, Ramsgate, NSW 2217



Contaminated Land

Contaminated Land

277 The Grand Parade, Ramsgate, NSW 2217

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
1127	Shell Coles Express Service Station	Grand Parade cnr Ramsgate Road	Ramsgate	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	60m	North
1530	Scarborough Park South	184R Production AVENUE	Kogarah	Landfill	Regulation being finalised	Current EPA List	Premise Match	815m	North West
1188	Former 7- Eleven Ramsgate	368 Rocky Point ROAD	Sans Souci	Service Station	Contamination formerly regulated under the CLM Act	Current EPA List	Premise Match	920m	West

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EPAA Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Contaminated Land

277 The Grand Parade, Ramsgate, NSW 2217

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

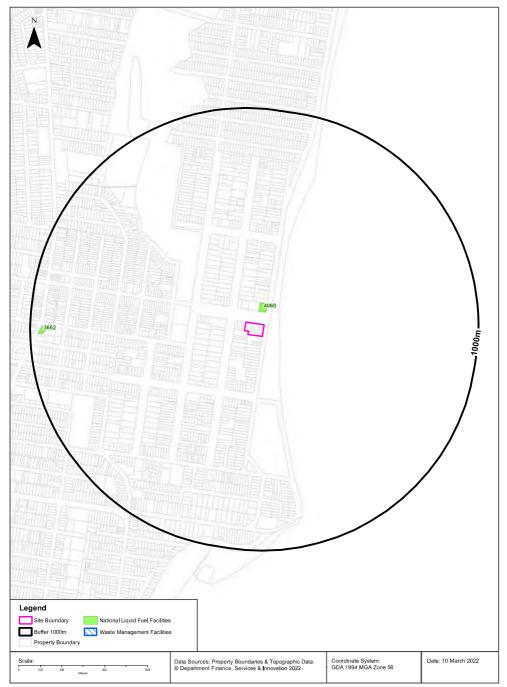
Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
279	Former 7-Eleven Ramsgate	368 Rocky Point Road	Sans Souci	2 former	3328	Premise Match	920m	West

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					


Former Gasworks Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

277 The Grand Parade, Ramsgate, NSW 2217

Waste Management & Liquid Fuel Facilities

277 The Grand Parade, Ramsgate, NSW 2217

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

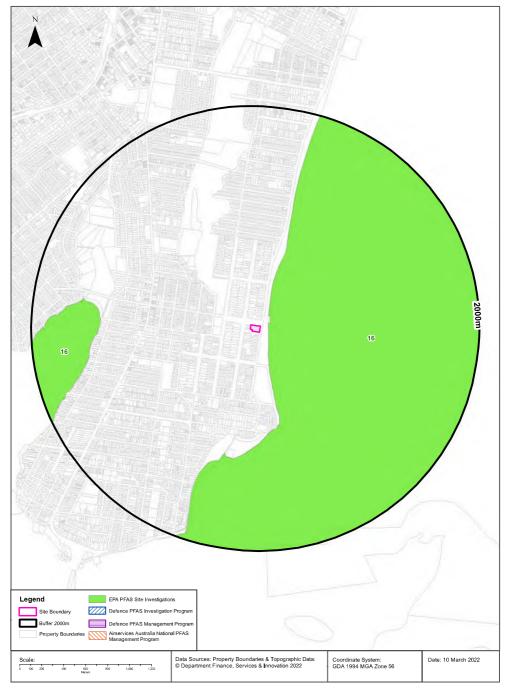
Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilities within the dataset buffer:


Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
4060	Shell	Coles Express Ramsgate	274-276 The Grand Parade	Ramsgate Beach	Petrol Station	Operational		25/07/2011	Premise Match	60m	North
3662	7-Eleven Pty Ltd	Ramsgate	368 Rocky Point Road	Ramsgate	Petrol Station	Operational		13/07/2012	Premise Match	920m	West

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs 277 The Grand Parade, Ramsgate, NSW 2217

PFAS Investigation & Management Programs

277 The Grand Parade, Ramsgate, NSW 2217

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
16	Botany Bay area	Botany Bay area & Georges River	Area Match	73m	East

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

277 The Grand Parade, Ramsgate, NSW 2217

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

277 The Grand Parade, Ramsgate, NSW 2217

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- · Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

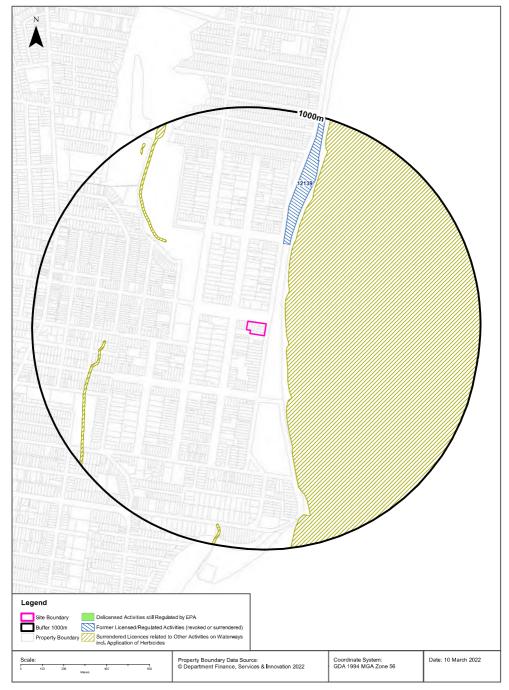
EPA Other Sites with Contamination Issues: Environment Protection Authority State of New South Wales through the Environment Protection Authority

EPA Activities

277 The Grand Parade, Ramsgate, NSW 2217

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:


EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

POEO Licence Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

277 The Grand Parade, Ramsgate, NSW 2217

EPA Activities

277 The Grand Parade, Ramsgate, NSW 2217

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	91m	East
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	91m	East
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	91m	East
12139	WARD CIVIL & ENVIRONMENTA L ENGINEERING PTY LTD	Lady Robinsion Beach Restoration, Taylor Bar and Kyeemagh Bar Borrow Pits, DOLLS POINT, NSW 2219	Surrendered	19/05/2004	Water-based extractive activity	Network of Features	384m	North

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

277 The Grand Parade, Ramsgate, NSW 2217

Historical Business Directories

277 The Grand Parade, Ramsgate, NSW 2217

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	GROCERS-RETAIL.	Coles New World, 221 Ramsgate Rd., Ramsgate. 2217	40547	1986	Premise Match	0m	On-site
	GROCERS - RETAIL. (G7850)	Coles New World, 221 Ramsgate Rd., Ramsgate, 2217.	37488	1982	Premise Match	0m	On-site
2	MEDICAL PRACTITIONERS.	Faten, S., 88 Alfred St., Ramsgate. 2217.	54788	1986	Premise Match	0m	South West
	PATTERNMAKERS- ENGINEERING (P2240)	McIntyre, W. I., 88 Alfred St., Sans Souci. 2219.	63146	1982	Premise Match	0m	South West
	PATTERNMAKERS- ENGINEERING	McIntyre, W. L., 88 Alfred St., Sans Souci 2219	56232	1978	Premise Match	0m	South West
	SKI-SNOW &/OR WATER- IMPS. &/OR MFRS.	McIntyre, W. L., 88 Alfred St., Sans Souci. 2219	77750	1975	Premise Match	0m	South West
	PATTERNMAKERS- ENGINEERING	McIntyre, Wallace I., 88 Alfred St., Sans Souci, 2219	66189	1975	Premise Match	0m	South West
	PATTERN MAKERS- ENGINEERING(P198)	MCINTYRE WALLACE I., 88 ALFRED St., RAMSGATE	347371	1970	Premise Match	0m	South West
	PATTERN MAKERS- ENGINEERING(P198)	McIntyre, W. I., 88 Alfred St., Ramsgate	347372	1970	Premise Match	0m	South West
	SKI MFRSSNOW &/OR WATER(S343)	McIntyre, W. I., 88 Alfred St., Ramsgate	361764	1970	Premise Match	0m	South West
	SPORTS GOODS MFRS. (S440)	McIntyre, W. I., 88 Alfred St., Ramsgate	363323	1970	Premise Match	0m	South West
	ENGINEERS-GENERAL &/OR MFRG &/OR MECHANICAL (E615)	Simpson, F. A Son Pty. Ltd., 88 Alfred St., Sans Souci	299612	1970	Premise Match	0m	South West
	BRASS FITTINGS & BRASSWARE MANUFACTURERS (B667)	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	269560	1970	Premise Match	0m	South West
	ENGINEERS-REPETITION (E735)	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	300888	1970	Premise Match	0m	South West
	Engineers General &/or Mfrg. &/or Mechanical	Simpson, F. & Son Pty. Ltd., 88 Alfred St., Sans Souci	82864	1965	Premise Match	0m	South West
	Brass Fittings & Brassware Mfrs.	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	54100	1965	Premise Match	0m	South West
	Engineers - Repetition	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	84099	1965	Premise Match	0m	South West
	ENGINEERS- GENERAL/MFRG./ MECHANICAL	Simpson, F. & Son Pty. Ltd., 88 Alfred St., Sans Souci	307024	1961	Premise Match	0m	South West
	BRASS FITTINGS & BRASSWARE MANUFACTURERS	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	275666	1961	Premise Match	0m	South West
	ENGINEERS-REPETITION	Simpson, Frank & Son Pty. Ltd., 88 Alfred St., Sans Souci	308327	1961	Premise Match	0m	South West
3	WINE &/OR SPIRIT MERCHANTS RETAIL.	La-Nita Liquor Store, 213 Ramsgate Rd., Ramsgate, 2217	99369	1986	Premise Match	0m	West
	WINE &/OR SPIRIT MERCHANTS RETAIL. (W5960)	La-Nita Liquor Store, 213 Ramsgate Rd., Ramsgate. 2217.	84819	1982	Premise Match	0m	West
4	CHEMISTS- PHARMACEUTICAL.	Eddies Pharmacy, 211 Ramsgate Rd., Ramsgate. 2217	14185	1986	Premise Match	12m	West
	RESTAURANTS.	Wagon Wheels Restaurants, 211 Ramsgate Rd., Ramsgate, 2217	83113	1986	Premise Match	12m	West

lap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
4	TAKE-AWAY FOODS.	Wagon Wheels, 211 Ramsgate Rd., Ramsgate. 2217	91931	1986	Premise Match	12m	West
	CHEMISTS - PHARMACEUTICAL.(C4110)	Bens Pharmacy, 211 Ramsgate Rd., Ramsgate. 2217.	14759	1982	Premise Match	12m	West
	MEDICAL PRACTITIONERS. (M2020)	Hourani, M., 211 Ramsgate Rd., Ramsgate. 2217.	48613	1982	Premise Match	12m	West
5	RESTAURANTS.	Ramsgate Chinese, 209 Ramsgate Rd., Ramsgate, 2217	82682	1986	Premise Match	24m	West
	RESTAURANTS. (R5180)	Ramsgate Chinese, 209 Ramsgate Rd., Ramsgate. 2217.	71618	1982	Premise Match	24m	West
6	MILK, FRUIT JUICE BARS/CONFECTIONERS	Ramsgate Public Swimming Baths Refreshment Rooms., Cnr. Ramsgate Rd. & Grand Pde., Ramsgate	331125	1970	Road Intersection	36m	North Eas
	Milk, Fruit Juice Bars/Confectioners	Ramsgate Public Swimming Baths Refreshment Rooms, Cnr. Ramsgate Rd. & Grand Pde., Ramsgate	115516	1965	Road Intersection	36m	North Eas
	MILK, FRUIT JUICE BARS/CONFECTIONERS	Ramsgate Public Swimming Baths Refreshment Rooms, Cnr. Ramsgate Rd. & Grand Pde., Ramsgate	339536	1961	Road Intersection	36m	North Eas
7	HAIRDRESSERS-LADIES &/OR BEAUTY SALONS.	Babs Boutique, 207 Ramsgate Rd., Ramsgate. 2217	41629	1986	Premise Match	37m	West
	DENTISTS.	Dale, J. W., 207 Ramsgate Rd, Ramsgate. 2217	22482	1986	Premise Match	37m	West
	DENTISTS.	Hutchinson, L., 207 Ramsgate Rd., Ramsgate. 2217	22778		Premise Match	37m	West
	DENTISTS.	Stevenson, R. V., 207 Ramsgate Rd., Ramsgate. 2217	23390	1986	Premise Match	37m	West
	DENTISTS.	Sullivan, J. M., 207 Ramsgate Rd., Ramsgate, 2217	23400	1986	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney, J. W., 207 Ramsgate Rd., Ramsgate, 2217	57826	1986	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney, P. J., 207 Ramsgate Rd., Ramsgate. 2217	57828	1986	Premise Match	37m	West
	BEAUTY SALONS &/OR LADIES HAIRDRESSERS. (B2000)	Babs Boutique, 207 Ramsgate Rd., Ramsgate, 2217.	5240	1982	Premise Match	37m	West
	DENTISTS. (D1800)	Dale, J. W., 203 Ramsgate Rd., Ramsgate. 2217.	20148	1982	Premise Match	37m	West
	DENTISTS. (D1800)	Dale, J. W., 207 Ramsgate Rd., Ramsgate. 2217.	20147	1982	Premise Match	37m	West
	DENTISTS. (D1800)	Hutchinson, L 207 Ramsgate Rd., Ramsgate. 2217.	20385	1982	Premise Match	37m	West
	DENTISTS. (D1800)	Stevenson, R. V., 207 Ramsgate Rd., Ramsgate. 2217.	20889	1982	Premise Match	37m	West
	MEDICAL PRACTITIONERS. (M2020)	Sweeney, J. W 207 Ramsgate Rd., Ramsgate. 2217.	50502	1982	Premise Match	37m	West
	MEDICAL PRACTITIONERS. (M2020)	Sweeney, P. J 205 Ramsgate Rd., Ramsgate. 2217.	50504	1982	Premise Match	37m	West
	MEDICAL PRACTITIONERS. (M2020)	Sweeney. P. J., 207 Ramsgate Rd., Ramsgate. 2217.	50503	1982	Premise Match	37m	West
	BEAUTY SALONS &/OR LADIES HAIRDRESSERS.	Ji∎ian Hairdresser, 207 Ramsgate Rd., Ramsgate. 2217	5154	1978	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney, J.W., 207 Ramsgate Rd., Ramsgate. 2217	44426	1978	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney. P. J., 207 Ramsgate Rd., Ramsgate. 2217	44429	1978	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Calderbank, D., 207 Ramsgate Rd., Sans Souci. 2219.	49865	1975	Premise Match	37m	West
	BEAUTY SALONS &/OR LADIES HAIRDRESSERS.	Jillian Hairdresser, 207 Ramsgate Rd., Ramsgate. 2217	5446	1975	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney, J. W., 207 Ramsgate Rd., Sans Souci. 2219	51679	1975	Premise Match	37m	West
	MEDICAL PRACTITIONERS.	Sweeney. P. J, 207 Ramsgate Rd., Sans Souci. 2219	51682	1975	Premise Match	37m	West
	MEDICAL PRACTITIONERS (M216)	Calderbank, Dorothea., 207 Ramsgate Rd., Sans Souci	326370	1970	Premise Match	37m	West

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
7	DENTISTS (D140)	Cohen, D. J. & Mathews, T. B., 203 Ramsgate Rd., Sans Souci	288467	1970	Premise Match	37m	West
	BEAUTY SALONS &/OR LADIES' HAIRDRESSERS (B260)	Ji∎ian Hairdresser., 207 Ramsgate Rd., Ramsgate	266066	1970	Premise Match	37m	West
	MEDICAL PRACTITIONERS (M216)	Maitland, H. L. C., 207 Ramsgate Rd., Ramsgate	327554	1970	Premise Match	37m	West
	MEDICAL PRACTITIONERS (M216)	Sweeney, P. J., 207 Ramsgate Rd., Sans Souci	328365	1970	Premise Match	37m	West
	DENTISTS	Cohen, D. J. & Mathews, T. B., 203 Ramsgate Rd., Sans Souci	73225	1965	Premise Match	37m	West
	Medical Practitioners	Maitland, H. L. C., 207 Ramsgate Rd., Ramsgate	112133	1965	Premise Match	37m	West
8	CONFECTIONERS-RETAIL	Lillies Corner (J. Lillie), 283 Grand Pde., Ramsgate	28726	1950	Premise Match	46m	South
	MIXED BUSINESSES & GENERAL STORES	Lillies Corner (J. Lillie), 283 Grand Pde., Ramsgate	80410	1950	Premise Match	46m	South
9	Motor Garages & Service Stations	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate 2217	53744	1991	Premise Match	60m	North
	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate, 2217	64808	1986	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217.	56894	1982	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	50187	1978	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate. 2217	58984	1975	Premise Match	60m	North
	MOTOR GARAGES & ENGINEERS(M6S6)	Grand Parade Auto Port., 274-276 The Grand Pde., RAMSGATE	337924	1970	Premise Match	60m	North
	Motor Service Stations - Petrol, Oil, Etc.	Grand Parade Auto Port, 274-276 The Grand Pde. Ramsgate	126078	1965	Premise Match	60m	North
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Bindley, J., 278 Grand Pde. SANS SOUCI	350373	1961	Premise Match	60m	North
	MOTOR SERVICE STATIONS- PETROL, Etc.	Bindlev, J., 278 Grand Pde., Sans Souci	85796	1950	Premise Match	60m	North
	MILK BARS & CONFECTIONERS	Bindley, J., 278 Grand Pde., Sans Souci	76362	1950	Premise Match	60m	North
10	WELDERS-ELECTRIC &/OR OXY	Morgan, W. J., 160 Ramsgate Rd., Kogarah	112957	1950	Premise Match	60m	North
11	Bakers	Robbies, 14A, Ramsgate Plaza, Ramsgate Rd, Ramsgate 2217	35347	1991	Premise Match	89m	West
	Building Societies	St. George Building Society., 13, Ramsgate Plaza, Ramsgate Rd., Ramsgate 2217	37399	1991	Premise Match	89m	West
	Wallpaper &/or Wallcoverings Merchants	Wallpaper Centre, Ramsgate Plaza Ramsgate Rd Ramsgate 2217	65844	1991	Premise Match	89m	West
	RESTAURANTS.	Beachcomber, Shop 11 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	81075	1986	Premise Match	89m	West
	CLOTHING-RETAIL-LADIES &/OR GIRLS WEAR.	Casual Aire, Shop 10 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	16930	1986	Premise Match	89m	West
	DENTISTS.	Foar, A. K., Suite 6, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	22587	1986	Premise Match	89m	West
	OPTOMETRISTS &/OR OPTICIANS.	Fortescue, R. J., Shop 8, Ramsgate Plaza, Ramsgate Rd., Ramsgate 2217	70844	1986	Premise Match	89m	West
	GROCERS-RETAIL.	Franklins, Shop 1 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	40733	1986	Premise Match	89m	West
	HAIRDRESSERS-LADIES &/OR BEAUTY SALONS.	Hairlights Unisex, Shop 9 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	42319	1986	Premise Match	89m	West
	DRESS FABRIC RETAILERS.	Kays Fashion Fabrics, Shop 2 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	25044	1986	Premise Match	89m	West

Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
11	CLOTHING-RETAIL-LADIES &/OR GIRLS WEAR.	Martha's Boutique, Shop 6 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	17541	1986	Premise Match	89m	West
	CHIROPRACTORS.	Petinos, A., Suite 11, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	15271	1986	Premise Match	89m	West
	VIDEO RECORDER &/OR CASSETTE SALES &/OR HIRE &/OR SERVICE.	Plaza Video, Ramsgate Plaza, Ramsgate Rd. Ramsgate. 2217	97701	1986	Premise Match	89m	West
	BAKERS-BREAD.	Robbies, 14A Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	5145	1986	Premise Match	89m	West
	FISH MERCHANTS-RETAIL.	Seafood Spot, The, 191 Ramsgate Rd., Ramsgate, 2217	33261	1986	Premise Match	89m	West
	BUILDING SOCIETIES.	St. George Building Society, 13 Ramsgate Plaza, Ramsgate Rd., Ramsgate.2217	8980	1986	Premise Match	89m	West
	TRAVEL AGENCIES &/OR BOOKING OFFICES.	St. George Travel, Shop 7 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	95597	1986	Premise Match	89m	West
	BUTCHERS-RETAIL.	V. & T. Meats, Shop 4 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	10763	1986	Premise Match	89m	West
	WALLPAPER MERCHANTS.	Wallpaper Centre, Ramsgate Plaza, Ramsgate Rd. Ramsgate. 2217	98171	1986	Premise Match	89m	West
	MEDICAL PRACTITIONERS.	Yenson, N., Suite 10, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217	58384	1986	Premise Match	89m	West
	RESTAURANTS. (R5180)	Beachcomber, Shop 11 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	70449	1982	Premise Match	89m	West
	JEWELLERS &/OR WATCHMAKERS RETAIL. (J0550)	Eisenberg, G., Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	43529	1982	Premise Match	89m	West
	DENTISTS. (D1800)	Foar, A. K., Suite 6, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	20228	1982	Premise Match	89m	West
	OPTOMETRISTS &/OR OPTICIANS.(O3600)	Fortescue, Shop 8, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	61823	1982	Premise Match	89m	West
	GROCERS - RETAIL. (G7850)	Franklins, Shop 1 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	37630	1982	Premise Match	89m	West
	GIFT SHOPS. (G3350)	Kitchen World, Shop 14, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	36368	1982	Premise Match	89m	West
	BUTCHERS - RETAIL. (B8040)	La Bourcherie, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	11104	1982	Premise Match	89m	West
	DRESS SHOPS & ACCESSORIES.(D7450)	Martha's Boutique, Shop 6 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	23150	1982	Premise Match	89m	West
	BEAUTY SALONS &/OR LADIES HAIRDRESSERS. (B2000)	Nancy's Place, Shop 9 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	6247	1982	Premise Match	89m	West
	CHIROPRACTORS. (C4365)	Petinos, A., Suite 11, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	16105	1982	Premise Match	89m	West
	FISH MERCHANTS - RETAIL (F2825)	Seafood Spot, The, 191 Ramsgate Rd., Ramsgate. 2217.	31047	1982	Premise Match	89m	West
	BUTCHERS - RETAIL. (B8040)	V. & T Meats, Shop 8 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	11748	1982	Premise Match	89m	West
	WALLPAPER MERCHANTS. (W0600)	Wallpaper Centre, Ramsgate Plaza, Ramsgate Rd., Ramsgate, 2217.	83719	1982	Premise Match	89m	West
	MEDICAL PRACTITIONERS. (M2020)	Yenson, N., Suite 10, Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	50922	1982	Premise Match	89m	West
	MIXED BUSINESSES (M408)	Schneider, N. Mrs., 197 Ramsgate Rd., Sans Souci	333786	1970	Premise Match	89m	West
	Drapers - Retail	Ramsgate Beach Store (The), 193 Ramsgate Rd., Ramsgate	75258	1965	Premise Match	89m	West
	DENTISTS	Cohen, Donald L., 191 Ramsgate Rd., Ramsgate	295789	1961	Premise Match	89m	West

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
11	DRAPERS-RETAIL	Ramsgate Beach Store (The), 193 Ramsgate Rd., Ramsgate	298094	1961	Premise Match	89m	West
	RADIO &/OR TELEVISION SALES & SERVICEMEN	Ramsgate Beach Television & Radio, 193 Ramsgate Rd. RAMSGATE	364438	1961	Premise Match	89m	West
12	Medical Practitioners	Goodman, Ben, 150 Ramsgate Rd., Ramsgate	111491	1965	Premise Match	109m	North West
	MEDICAL PRACTITIONERS	Goodman, Ben, 150 Ramsgate Rd., Ramsgate	335241	1961	Premise Match	109m	North West
13	SQUASH COURTS (S475)	Ramsgate Beach Squash Court, 288 Grand Pde., Ramsgate	363967	1970	Premise Match	113m	South
	SQUASH COURTS	Ramsgate Beach Squash Court, 288 Grand Pde., Ramsgate	146938	1965	Premise Match	113m	South
	SQUASH COURTS	Ramsgate Beach Squash Court, 288 Grand Pde., Ramsgate	252563	1961	Premise Match	113m	South
14	MILK BARS & CONFECTIONERS	Doherty, L. M., 272 Grand Pde., Ramsgate	76616	1950	Premise Match	120m	North
15	MILK, FRUIT JUICE BARS &/OR CONFECTIONERS.	Doherty, B. G., 289 Grand Parade., Ramsgate. 2217	53368	1975	Premise Match	127m	South
	MILK, FRUIT JUICE BARS/CONFECTIONERS	Doherty, B. G., 289 Grand Pde., Ramsgate	330562	1970	Premise Match	127m	South
	Milk, Fruit Juice Bars/Confectioners	Doherty, L. M., 289 Grand Pde., Ramsgate	115005	1965	Premise Match	127m	South
	Camping Grounds & Caravan Parks	Ramsgate Beach Caravan Park Pty. Ltd., 289 The Grand Pde., Ramsgate	61773	1965	Premise Match	127m	South
	MILK, FRUIT JUICE BARS/CONFECTIONERS	Doherty, L. M., 289 Grand Pde., Ramsgate	339036	1961	Premise Match	127m	South
	CAMPING GROUNDS & CARAVAN PARKS	Ramsgate Beach Caravan Park Pty. Ltd., 289 Grand Pde., Ramsgate	283492	1961	Premise Match	127m	South
16	Mixed Businesses	Carter & Button, 93 Alfred St., Ramsgate	116867	1965	Premise Match	150m	North West
	MIXED BUSINESS	Carter & Button, 93 Alfred St., Ramsgate	340481	1961	Premise Match	150m	North West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
17	DRESS SHOPS & ACCESSORIES.(D7450)	Casual Aire, Shop 10 Ramsgate Plaza, Ramsgate Rd., Ramsgate. 2217.	22600	1982	Road Match	0m
	FRUITERERS &/OR Fruft & Vegetable Market & Delicatessen, GREENGROCERS. Ramsgate Rd., Ramsgate. 2217		35240	1975	Road Match	0m
	DELICATESSENS	Fruit & Vegetable Market & Delicatessen, Ramsgate Rd., Ramsgate. 2217	20159	1975	Road Match	0m
	CLUBS & SPORTING BODIES (C487)	Ramsgate R. S. L Memorial Club., Ramsgate Rd., Sans Souci	284583	1970	Road Match	0m
	Clubs & Sporting Bodies	Ramsgate R.S.L., Ramsgate Rd., Ramsgate	69241	1965	Road Match	0m
	CLUBS & SPORTS BODIES	Ramsgate R.S.L., Ramsgate Rd., Ramsgate	291743	1961	Road Match	0m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

277 The Grand Parade, Ramsgate, NSW 2217

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	18989	1993	Premise Match	60m	North
	Motor Garages & Service Stations	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate 2217	53744	1991	Premise Match	60m	North
	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	11658	1990	Premise Match	60m	North
	MOTOR GARAGE & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde, Ramsgate. 2217	65139	1989	Premise Match	60m	North
	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	59378	1988	Premise Match	60m	North
	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	64808	1986	Premise Match	60m	North
	MOTOR GARAGES & SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	44904	1985	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	28407	1984	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate. 2217	14830	1983	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217.	56894	1982	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate 2217	3454	1981	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate. 2217	58185	1980	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate. 2217.	41647	1979	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port, 274 The Grand Pde., Ramsgate. 2217	50187	1978	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate 2217	30185	1976	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS.	Grand Parade Auto Port., 274 The Grand Pde., Ramsgate. 2217	58984	1975	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	12906	1972	Premise Match	60m	North
	MOTOR GARAGES &/OR ENGINEERS.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	62566	1971	Premise Match	60m	North

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	MOTOR GARAGES & ENGINEERS(M6S6)	Grand Parade Auto Port., 274-276 The Grand Pde., RAMSGATE	337924	1970	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	50663	1969	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	36750	1968	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	16153	1967	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	1727	1966	Premise Match	60m	North
	Motor Service Stations - Petrol, Oil, Etc.	Grand Parade Auto Port, 274-276 The Grand Pde. Ramsgate	126078	1965	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Grand Parade Auto Port., 274-276 The Grand Pde Ramsgate	52333	1964	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Bindley J., 278 Grand Pde Sans Souci	38701	1962	Premise Match	60m	North
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Bindley, J., 278 Grand Pde. SANS SOUCI	350373	1961	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Bindley J., 278 Grand Pde Sans Souci	24569	1959	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, ETC.	Bindley J., 278 Grand Pde Sans Souci	9402	1958	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, ETC.	Bindley J., 278 Grand Pde., Sans Souci	61802	1956	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, ETC.	Bindlev J., 278 Grand Pde., Sans Souci	54397	1954	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, ETC.	Bindlev J., 278 Grand Pde Sans Souci	44012	1953	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, ETC.	Bindlev J., 278 Grand Pde Sans Souci	35779	1952	Premise Match	60m	North
	MOTOR SERVICE STATIONS-PETROL, Etc.	Bindlev, J., 278 Grand Pde., Sans Souci	85796	1950	Premise Match	60m	North
2	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	BP Ramsgate Beach Service Station., 295 The Grand Pde., Ramsgate, 2217	63966	1981	Premise Match	194m	South
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	BP Ramsgate Beach Service Station., 295 The Grand Pde., Ramsgate, 2217	51468	1980	Premise Match	194m	South
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	BP Ramsgate Beach Service Station., 295 The Grand Pde., Ramsgate 2217.	41065	1979	Premise Match	194m	South
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	BP Ramsgate Beach Service Station, 295 The Grand Pde., Ramsgate. 2217	49603	1978	Premise Match	194m	South
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	BP Ramsgate Beach Service Station., 295 The Grand Pde., Ramsgate 2217	25317	1976	Premise Match	194m	South
	MOTOR GARAGES &/OR ENGINEERS.	BP Ramsgate Beach Service Station., 295 The Grand Pde., Ramsgate. 2217	58549	1975	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	18075	1972	Premise Match	194m	South

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
2	MOTOR GARAGES &/OR ENGINEERS.	BP Ramsgate Beach Service Station., 295 The Grand Pde Ramsgate	62564	1971	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	2514	1971	Premise Match	194m	South
	MOTOR GARAGES & ENGINEERS(M6S6)	BP Ramsgate Beach Service Station., 295 The Grand Pde., RAMSGATE	337398	1970	Premise Match	194m	South
	MOTOR SERVICE STATIONS- PETROL,OIL,Etc.	BP Service Station., 294 Grand Pde., RAMSGATE	340890	1970	Premise Match	194m	South
	MOTOR GARAGES & ENGINEERS.	BP Ramsgate Beach Service Station., 295 The Grand Pde Ramsgate	46999	1969	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	50660	1969	Premise Match	194m	South
	MOTOR GARAGES & ENGINEERS	BP Ramsgate Beach Service Station., 295 The Grand Pde Ramsgate	26390	1968	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	36747	1968	Premise Match	194m	South
	MOTOR GARAGES & ENGINEERS.	BP Ramsgate Beach Service Station., 295 The Grand Pde Ramsgate	10882	1967	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	16150	1967	Premise Match	194m	South
	MOTOR GARAGES & ENGINEERS.	BP Ramsgate Beach Service Station., 295 The Grand Pde Ramsgate	60615	1966	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Service Station., 294 Grand Pde Ramsgate	1724	1966	Premise Match	194m	South
	Motor Garages & Engineers	BP Ramsgate Beach Service Station, 295 The Grand Pde Ramsgate	123252	1965	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Joe's Grand Parade Service Station., 294 Grand Pde Ramsgate	38599	1962	Premise Match	194m	South
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Joe's Grand Parade Service Station, 294 Grand Pde., RAMSGATE	350733	1961	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Joe's Service Station., 295 Grand Pde Ramsgate	24493	1959	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, ETC.	Joe's Service Station., 295 Grand Pde Ramsgate	9610	1958	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, ETC.	Joe's Service Station., 295 Grand Pde Ramsgate	61968	1956	Premise Match	194m	South
	MOTOR SERVICE STATIONS-PETROL, ETC.	Joe's Service Station., 295 Grand Pde Ramsgate	54525	1954	Premise Match	194m	South

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

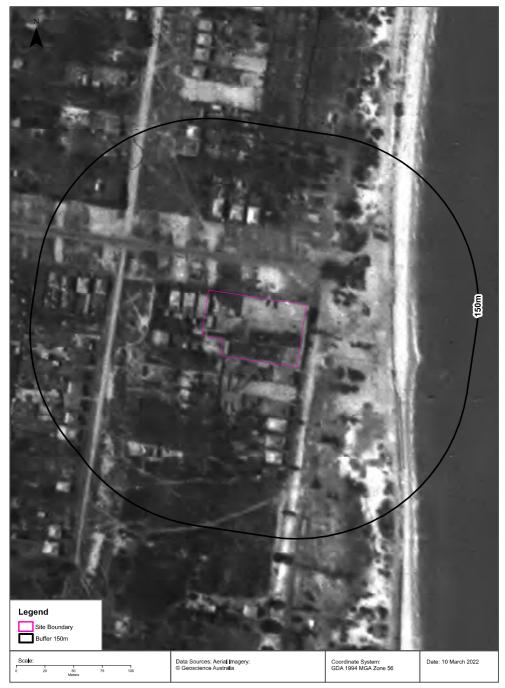
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

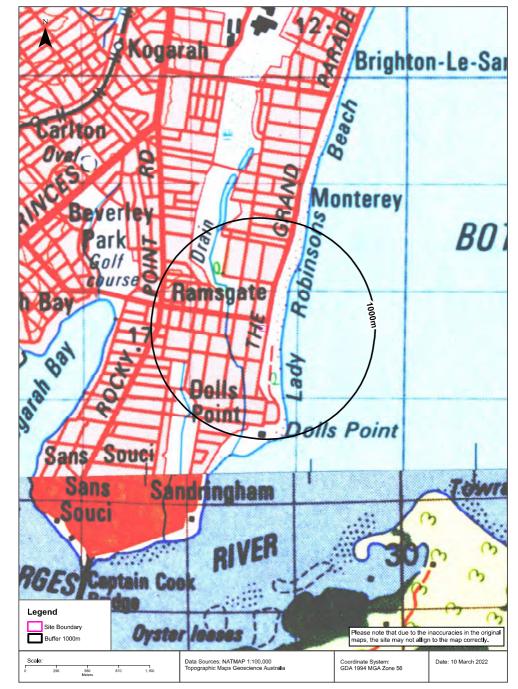
Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

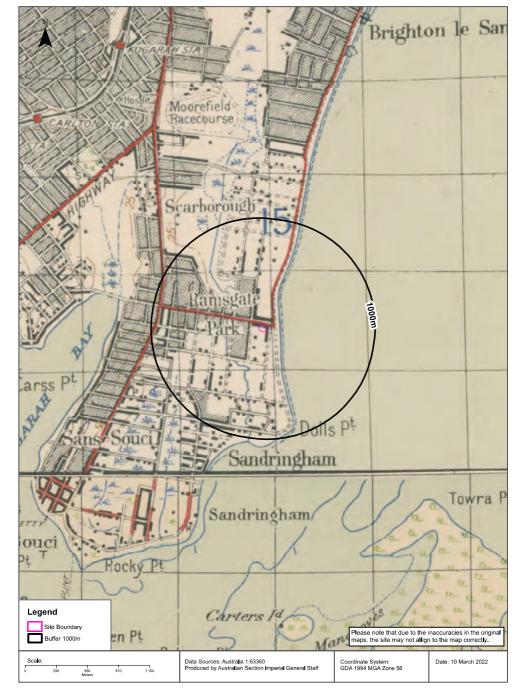
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

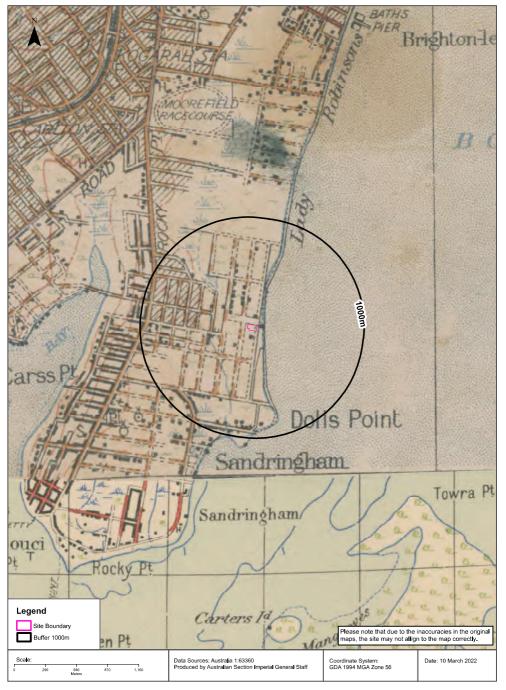
Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

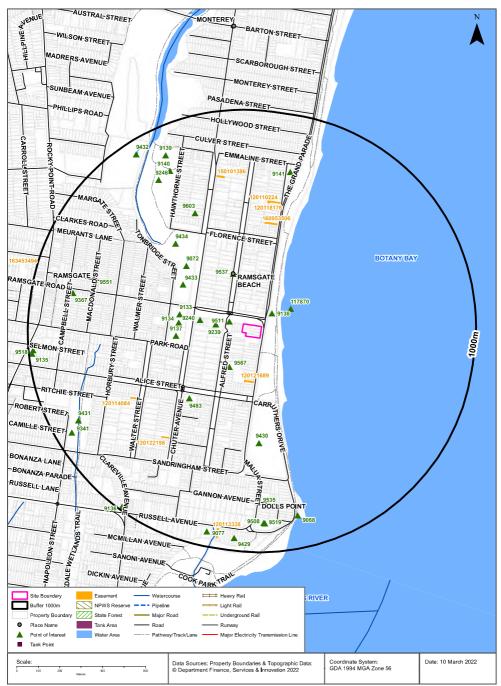
Aerial Imagery 1955, 1956




Topographic Map 2015


Historical Map 1975 - 1976


Historical Map 1935 - 1936


Historical Map 1917 - 1935

Topographic Features

Topographic Features

277 The Grand Parade, Ramsgate, NSW 2217

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
9511	Park	BILL BATLEY SQUARE	66m	North West
9138	Community Facility	RAMSGATE SLSC	78m	North East
9239	Shopping Centre	RAMSGATE PLAZA	126m	West
117870	Swimming Pool	Swimming Pool	159m	North East
9567	Tourist Park / Home Village	THE GRAND PINES TOURIST PARK	162m	South West
9240	Post Office	RAMSGATE BEACH POST OFFICE	203m	West
9537	Suburb	RAMSGATE BEACH	238m	North
9134	Club	RAMSGATE RSL MEMORIAL CLUB	298m	West
9133	Sports Field	BOWLING GREENS	301m	West
9137	Park	PEMBERTON RESERVE	309m	West
9433	Park	ROTARY PARK	336m	North West
9072	Sports Court	Sports Court	379m	North West
9483	Community Home	THOMAS HOLT SANS SOUCI GARDENS	391m	South West
9430	Park	COOK PARK	490m	South
9434	Park	TONBRIDGE STREET RESERVE	491m	North West
9603	Primary School	RAMSGATE PUBLIC SCHOOL	564m	North West
9551	Suburb	RAMSGATE	724m	West
9141	Park	HARRY JONES RESERVE	735m	North
9535	Suburb	DOLLS POINT	764m	South
9246	Sports Court	TENNIS COURTS	780m	North West
9140	Community Facility	SYD FROST MEMORIAL HALL	792m	North West
9367	Community Facility	LITERARY INSTITUTE	808m	West
9068	Headland	DOLLS POINT	847m	South
9519	Community Medical Centre	PRIMROSE HOUSE DOLLS POINT	863m	South
9508	Primary School	THE SCOTS COLLEGE BRIGHTON PREPARATORY SCHOOL	864m	South
9139	Park	LEO SMITH RESERVE	867m	North West
9431	Park	BONA PARK	868m	South West
9341	Park	PLAYGROUND	923m	South West
9077	Retirement Village	KENT HOUSE AND PRINCESS ALEXANDRA HOUSE	931m	South
9432	Park	SCARBOROUGH PARK	936m	North West
9429	Park	PETER DEPENA RESERVE	941m	South

Map Id	Feature Type	Label	Distance	Direction
9518	Community Medical Centre	RAMSGATE EARLY CHILDHOOD CENTRE	979m	West
9136	Library	SANS SOUCI LIBRARY	984m	South West
9135	Community Facility	RAMSGATE SENIOR CITIZENS CENTRE	985m	West

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

277 The Grand Parade, Ramsgate, NSW 2217

Tanks (Areas)

What are the Tank Areas located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120121689	Primary	Undefined		202m	South
160953506	Primary	Right of way		478m	North
120118176	Primary	Undefined		577m	North
120114084	Primary	Undefined		581m	South West
120110224	Primary	Undefined		582m	North
120122198	Primary	Undefined		594m	South West
150101386	Primary	Right of way		689m	North
120113338	Primary	Undefined		908m	South
163453494	Primary	Right of way	5m	998m	West

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

277 The Grand Parade, Ramsgate, NSW 2217

State Forest

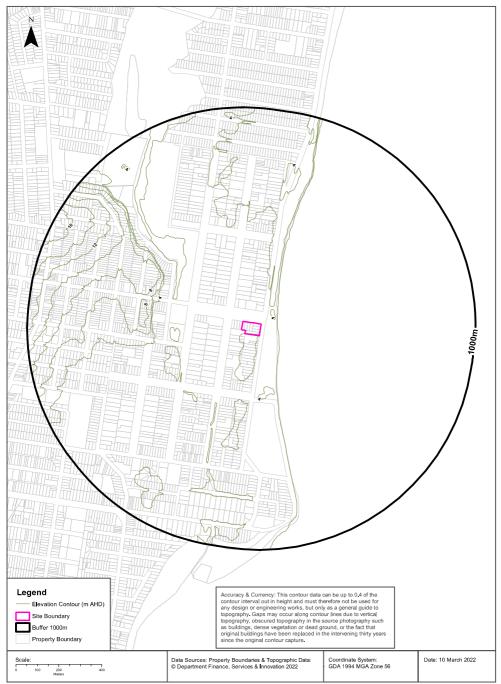
What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

277 The Grand Parade, Ramsgate, NSW 2217

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Porous, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018

Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

277 The Grand Parade, Ramsgate, NSW 2217

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW017 349	10BL008 507, 10WA11 2794	Spear	Private	Domestic	General Use			7.60	7.60					0m	On-site
GW106 324	10BL163 440, 10WA11 3580	Spear	Private	Domestic	Domestic		16/07/2004	5.00	5.00	Good		0.500		5m	South West
GW028 205	10BL020 778, 10WA11 4765	Spear	Loca l Govt	Recreation (groundwater)	Irrigation		01/04/1966	6.00	6.10	Good				23m	North West
GW109 160	10BL163 601, 10WA11 3628	Spear	Private	Domestic	Domestic		05/08/2008	5.49			5.49	1.000		26m	South West
GW033 181	10BL025 998, 10WA11 3001	Spear	Private	Domestic	General Use		01/12/1970	5.40						29m	West
GW111 186	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		18/04/2007	6.00	6.00					29m	East
GW106 419	10BL163 584, 10WA11 3619	Spear	Private	Domestic	Domestic		07/08/2004	4.00	4.00	Good	2.00	0.500		39m	South West
GW106 113	10BL162 845, 10WA11 3496	Spear	Private	Domestic	Domestic		30/03/2004	5.18	5.19		1.83	1.000		44m	South West
GW111 185	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		18/04/2007	6.00	6.00					48m	North East
GW017 480	10BL008 917, 10WA11 2799	(Unkn own)	Private	Domestic	General Use			7.60	7.60					52m	South
GW111 187	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		30/04/2007	5.30	6.00					52m	North East
GW111 184	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		18/04/2007	6.00	6.00					78m	North East
GW028 207	10BL020 776, 10WA11 4757	Bore	Local Govt	Recreation (groundwater)	Irrigation		01/01/1966	18.20	18.30	Poor				79m	North East
GW106 238	10BL163 616, 10WA11 3632	Spear	Private	Domestic	Domestic		19/07/2004	5.00	5.00	Good	2.00	0.500		85m	South
GW107 637	10BL165 593, 10WA11 4000	Spear	Private	Domestic	Domestic		25/10/2005	4.00	4.00	Good	2.00	0.500		89m	North
GW111 188	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		30/04/2007	6.00	6.00					93m	North
GW108 560	10BL601 264, 10WA11 4311	Spear	Private	Domestic	Domestic		15/02/2007	4.00	4.00	Good	2.00	0.500		108m	South West
GW111 183	10BL602 071	Bore	Private	Monitoring Bore	Monitoring Bore		18/04/2007	6.00	6.00					111m	North East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW023 601	10BL017 290, 10WA11 2885	Spear	Private	Domestic	General Use		01/02/1966	4.80	4.90	Good				113m	South West
GW108 174	10BL600 484, 10WA11 4156	Spear	Private	Domestic	Domestic		22/08/2006	4.00	4.00		2.00	0.500		125m	North
GW108 299	10BL600 643, 10WA11 4186	Spear	Private	Domestic	Domestic		03/11/2006	4.00	4.00		2.00	0.500		131m	West
GW023 603	10BL017 289, 10WA11 2884	Spear	Private	Domestic	General Use		01/02/1966	4.50	4.60	Good				136m	North
GW017 476	10BL008 826, 10WA11 2798	Spear	Private	Domestic	General Use			7.60	7.60					178m	South
GW071 885	10BL154 111, 10WA11 4651	Spear	Private	Industrial	Industrial		14/12/1992	6.00	6.00	Good	3.00	0.900	10.00	195m	South
GW108 812	10BL601 640, 10WA11 4395	Bore	Private	Domestic	Domestic		02/05/2007	4.00	4.00	Good	2.00	0.500		200m	South West
GW109 145	10BL600 747, 10WA11 4211	Spear	Private	Domestic	Domestic		04/08/2008	4.00		Good	4.00	0.500		243m	South
GW108 591	10BL601 232, 10WA11 4304	Spear	Private	Domestic	Domestic		05/02/2007	6.10	6.10	Good	2.44	1.000		246m	South
GW101 761	10BL157 338, 10WA11 3144	Bore		Domestic	Domestic		30/11/1995	5.50	5.50					247m	North West
GW105 133	10BL157 057, 10WA11 3106	Bore		Domestic	Domestic		01/10/1998	6.00						250m	West
GW107 341	10BL165 344, 10WA11 3964	Spear	Private	Domestic	Domestic		15/07/2009	6.00	6.00	Good	3.00	0.500		253m	North
GW031 679	10BL024 630, 10WA11 4769	Spear	Loca l Govt	Recreation (groundwater)	Irrigation		01/10/1969	6.40	6.40	Good				275m	South West
GW108 718	10BL601 595, 10WA11 4384	Spear	Private	Domestic	Domestic		16/05/2007	4.00	4.00	Good	2.00	0.500		286m	North
GW024 059	10BL017 416, 10WA11 2894	Spear	Private	Domestic	General Use			3.60						308m	South
GW105 767	10BL162 456, 10WA11 3430	Spear	Private	Domestic	Domestic		20/01/2004	5.00	5.00	Good	3.00	0.500		318m	North
GW106 325	10BL163 441, 10WA11 3581	Spear	Private	Domestic	Domestic		14/07/2004	5.00	5.00	Good	3.00	0.500		323m	North
GW108 701	10BL601 657, 10WA11 4399	Spear	Private	Domestic	Domestic		12/06/2007	6.10	6.10	Good	3.15	1.000		327m	North
GW102 629	10BL159 237, 10WA11 3282	Bore		Domestic	Domestic		19/06/1999	8.00	8.00					331m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW110 657	10BL601 148, 10WA11 4290	Spear	Private	Domestic	Domestic		18/02/2007	5.49	5.49	Good	1.52	1.000		360m	South
GW108 598	10BL601 372, 10WA11 4329	Spear	Private	Domestic	Domestic		24/03/2007	5.18	5.19	Good	1.52	1.000		364m	South West
GW107 724	10BL165 965, 10WA11 4069	Spear	Private	Domestic	Domestic		10/01/2006	4.00	4.00	Good	2.00	0.500		371m	South
GW111 282	10BL604 299, 10WA11 4609	Spear	Private	Domestic	Domestic		17/11/2010	6.00	6.00		4.00			371m	South West
GW106 115	10BL162 852, 10WA11 3497	Spear	Private	Domestic			03/05/2004	4.00	4.00					381m	West
GW108 627	10BL164 200, 10WA11 3754	Spear	Private	Domestic	Domestic		22/12/2006	6.00	6.00	Good	3.00	0.500		385m	South
GW108 490	10BL600 542, 10BL602 309, 10WA11 4747	Bore	Private	Recreation (groundwater), Test Bore	Recreation (groundwate r)		14/01/2008	12.50	12.50	Good				388m	North West
GW106 849	10BL164 443, 10WA11 3792	Spear	Private	Domestic	Domestic		29/12/2004	4.27	4.27		1.83	1.000		398m	West
GW023 457	10BL017 014, 10WA11 2857	Spear	Private	Domestic	General Use		01/01/1966	3.60		Good				410m	South West
GW024 174	10BL018 343, 10WA11 4759	Bore	Local Govt	Recreation (groundwater)	Irrigation		01/09/1966	4.20	4.30					412m	North
GW107 149	10BL164 991, 10WA11 3899	Spear		Domestic	Domestic		06/04/2005	6.00	6.00					413m	West
GW107 077	10BL165 042, 10WA11 3907	Spear	Private	Domestic	Domestic		11/05/2005	4.00	4.00	Good	2.00	0.500		415m	South West
GW111 766	10BL165 193, 10WA11 3934	Bore	Private	Domestic	Domestic		25/07/2005	4.00	4.00	good	2.00	0.500		425m	South West
GW111 376	10BL601 505, 10WA11 4364	Spear	Private	Domestic	Domestic		31/05/2007	7.00	7.00					444m	North
GW109 643	10BL602 355, 10WA11 4495	Spear	Private	Domestic	Domestic		29/04/2008	6.71	6.71	Good	3.05	1.000		455m	North
GW110 777	10BL601 259, 10WA11 4310	Spear	Private	Domestic	Domestic		22/04/2010	4.00						461m	South West
GW107 183	10BL164 140, 10WA11 3735	Spear	Private	Domestic	Domestic		24/10/2004	5.50	5.50					462m	South West
GW106 331	10BL164 117, 10WA11 3728	Spear	Private	Domestic	Domestic		30/09/2004	5.00	5.00	Good	1.50	0.500		463m	West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW109 642	10BL602 354, 10WA11 4494	Spear	Private	Domestic	Domestic		29/04/2008	6.71	6.71		3.05	1.000		465m	North
GW109 939	10BL602 759, 10WA11 4532	Spear	Private	Domestic	Domestic		26/11/2008	6.10	6.10	Good	3.10	1.000		469m	North
GW075 063		Bore	NSW Office of Water		Monitoring Bore	BOTANY BORE AT TONBRID GE RESERVE	28/05/2001		3.40				13.25	471m	North West
GW031 678	10BL024 631, 10WA11 3000	Spear	Loca l Govt	Domestic	Irrigation		01/09/1969	6.40	6.40	Good				478m	North
GW108 292	10BL600 584, 10WA11 4171	Spear	Private	Domestic	Domestic		27/10/2006	4.00	4.00		2.00	0.500		483m	South
GW106 732	10BL164 239, 10WA11 3761	Spear	Private	Domestic	Domestic		07/01/2005	6.00	6.00					484m	South West
GW114 835	10WA11 9164	Spear	Private	Domestic	Domestic		24/03/2015	6.00	6.00		2.00	0.500		488m	South West
GW109 641	10BL602 353, 10WA11 4493	Spear	Private	Domestic	Domestic		29/04/2008	6.71	6.71	Good	3.05	1.000		490m	North
GW109 318	10BL602 591, 10WA11 4524	Bore	Private	Domestic	Domestic		10/09/2008	6.10		Good	2.74	1.000		491m	North West
GW106 172	10BL163 701, 10WA11 3654	Bore		Domestic			01/07/2005							494m	West
GW107 157	10BL165 278, 10WA11 3945	Bore		Domestic	Domestic		01/01/2003	6.00						502m	South
GW109 947	10BL602 292, 10WA11 4480	Spear	Private	Domestic	Domestic		25/01/2009	7.00	7.00	Good	4.00	0.500		508m	North
GW108 644	10BL601 348, 10WA11 4324	Spear	Private	Domestic	Domestic		23/02/2007	4.00	4.00	Good	2.00	0.500		510m	South West
GW106 153	10BL163 333, 10WA11 3561	Spear		Domestic	Domestic		28/06/2005	6.00						511m	North
GW106 152	10BL163 332, 10WA11 3560	Spear	Private	Domestic	Domestic		08/11/2005	6.00	6.00	Good	3.00	0.500		514m	North
GW108 658	10BL164 758, 10WA11 3854	Spear	Private	Domestic	Domestic		10/01/2007	4.00	4.00		2.00	0.500		514m	South West
GW106 420	10BL163 583, 10WA11 3618	Bore		Domestic			01/09/2005							518m	South West
GW106 482	10BL164 183, 10WA11 3749	Spear	Private	Domestic	Domestic		12/10/2004	4.00	4.00	Good	2.00	0.500		518m	West
GW106 399	10BL163 465, 10WA11 3586	Spear	Private	Domestic	Domestic		20/07/2004	6.00	6.00		3.00	0.500		519m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW108 531	10BL600 902, 10WA11 4241	Spear	Private	Domestic	Domestic		28/12/2006	4.00	4.00	Good	2.00	0.500		519m	South West
GW108 173	10BL600 457, 10WA11 4149	Spear	Private	Domestic	Domestic		19/08/2006	5.00	5.00		3.00	0.500		520m	North
GW106 262	10BL163 173, 10WA11 3535	Spear	Private	Domestic	Domestic		02/08/2004	6.00	6.00		3.00	0.500		521m	North
GW108 763	10BL601 218, 10WA11 4303	Spear	Private	Domestic	Domestic		22/05/2007	6.00	6.00	Good	3.00	0.500		524m	North
GW109 236	10BL602 145, 10WA11 4450	Spear	Private	Domestic	Domestic		19/08/2008	5.18		Good	1.83	1.000		524m	South West
GW106 234	10BL163 560, 10WA11 3611	Spear	Private	Domestic	Domestic		14/08/2004	5.00	5.00					525m	South West
GW106 222	10BL163 640, 10WA11 3639	Spear	Private	Domestic	Domestic		20/07/2004	4.00	4.00	Good	2.00	0.500		542m	South West
GW108 311	10BL600 525, 10WA11 4160	Spear		Domestic	Domestic		01/01/1999	4.00						543m	North
GW106 840	10BL162 630, 10WA11 3461	Spear	Private	Domestic	Domestic		23/02/2005	4.00	4.00	Good	2.00	0.500		545m	South West
GW105 753	10BL162 248, 10WA11 3379	Spear	Private	Domestic	Domestic		06/01/2004	4.00	4.00		1.50	0.500		546m	South
GW106 544	10BL162 236, 10WA11 3372	Spear	Private	Domestic	Domestic		12/11/2004	4.00	4.00	Good	2.00	0.500		546m	South West
GW105 119	10BL157 196, 10WA11 3123	Bore	Private	Domestic	Domestic		10/10/1995	6.10	6.10	Good	1.22	1.000		553m	South West
GW106 809	10BL164 060, 10WA11 3722	Spear	Private	Domestic	Domestic		07/01/2005	6.00	6.00					561m	South West
GW108 554	10BL601 242, 10WA11 4307	Spear	Private	Domestic	Domestic		20/02/2007	4.00	4.00	Good	2.00	0.500		562m	West
GW105 772	10BL162 338, 10WA11 3408	Spear	Private	Domestic	Domestic		05/01/2004	4.00	4.00		2.00	0.500		566m	West
GW108 810	10BL601 693, 10WA11 4406	Spear	Private	Domestic	Domestic		10/05/2007	6.00	6.00	Good	3.00	0.500		566m	North
GW105 616	10BL161 663, 10WA11 3340	Spear	Private	Domestic	Domestic		30/10/2003	4.50	4.50	Good	2.00	0.500		567m	South West
GW106 920	10BL164 646, 10WA11 3827	Spear	Private	Domestic	Domestic		30/01/2005	6.10	6.10	Good	2.13	1.000		575m	North
GW109 227	10BL163 528, 10WA11 3601	Spear	Private	Domestic	Domestic		18/08/2008	8.00			2.00	2.500		576m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW024 591	10BL018 811, 10WA11 2968	Spear	Private	Domestic	General Use		01/11/1965	4.80	4.90	Good				579m	South West
GW105 249	10BL162 369, 10WA11 3416	Bore		Domestic	Domestic		05/01/2003	4.00	4.00	Good	2.00	0.500		581m	West
GW105 250	10BL162 370, 10WA11 3417	Bore		Domestic	Domestic		05/01/2004	4.00	4.00	Good	2.00	0.500		592m	West
GW111 475	10BL604 410, 10WA11 4615	Spear	Private	Domestic	Domestic		13/05/2011	4.00	4.00		2.00	0.500		599m	South West
GW109 031	10BL601 563, 10WA11 4375	Spear	Private	Domestic	Domestic		14/07/2008	4.00		Good	2.00	0.500		601m	South
GW108 697	10BL601 578, 10WA11 4380	Spear	Private	Domestic	Domestic		16/04/2007	4.00	4.00	Good	2.00	0.500		604m	South West
GW108 745	10BL601 460, 10WA11 4356	Spear	Private	Domestic	Domestic		26/03/2007	7.01	7.02	Good	3.40	1.000		604m	North
GW106 564	10BL164 169, 10WA11 3746	Spear	Private	Domestic	Domestic		16/11/2004	3.05	3.50	Good	1.22	1.000		606m	West
GW107 667	10BL162 204, 10WA11 3364	Spear	Private	Domestic	Domestic		28/11/2005	7.00	7.00	Good	2.00	0.500		608m	South West
GW115 126	10WA11 7736			Domestic	Domestic		01/01/2012	5.50			9.00			608m	South
GW023 984	10BL017 318, 10WA11 2892	Spear	Private	Domestic	General Use		01/01/1966	6.70	6.70	Good				618m	North
GW107 878	10BL165 959, 10WA11 4067	Spear	Private	Domestic	Domestic		22/02/2006	4.00	4.00		2.00	0.500		623m	South West
GW072 484	10BL156 296, 10WA11 3031	Bore		Domestic	Domestic		13/10/1997	5.00				0.375		624m	South
GW101 763	10BL157 358, 10BL162 636, 10BL603 089, 10WA11 4569	Bore		Domestic, Recreation (groundwater)	Domestic		01/10/1994	6.00	6.00					629m	North West
GW106 411	10BL163 313, 10WA11 3557	Spear	Private	Domestic	Domestic		22/09/2004	4.00	4.00		2.00	0.500		630m	West
GW028 209	10BL020 777, 10WA11 4763	Spear	Loca l Govt	Recreation (groundwater)	Irrigation		01/02/1966	4.50	4.60	Good				632m	South
GW106 896	10BL164 366, 10WA11 3783	Spear	Private	Domestic	Domestic		26/11/2004	6.00	6.00	Good	3.00	0.500		632m	North
GW107 426	10BL163 203, 10WA11 3538	Spear	Private	Domestic	Domestic		21/10/2005	4.00	4.00	Good	2.00	0.500		635m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW108 268	10BL165 903, 10WA11 4058	Spear	Private	Domestic	Domestic		03/11/2006	4.00	4.00		2.00	0.500		638m	North West
GW102 137	10BL159 050, 10WA11 3270	Bore	Private	Domestic	Domestic		19/02/1999	5.00	5.00		3.00	0.500		639m	North
GW105 952	10BL163 368, 10WA11 3566	Bore		Domestic			23/05/2005							640m	South West
GW107 428	10BL165 397, 10WA11 3972	Spear	Private	Domestic	Domestic		18/10/2005	4.00	4.00		2.00	0.500		641m	South West
GW024 376	10BL018 575, 10WA11 2955	Spear	Private	Domestic	General Use		01/01/1966	4.80	4.90	Good				643m	South West
GW107 375	10BL163 458, 10WA11 3584	Spear	Private	Domestic	Domestic		26/09/2005	4.00	4.00	Good	2.00	0.500		645m	South West
GW106 384	10BL163 606, 10WA11 3630	Spear	Private	Domestic	Domestic		14/09/2004	6.10	6.10		3.05	1.000		654m	North West
GW023 508	10BL017 065, 10WA11 2862	Spear	Private	Domestic	General Use		01/08/1965	5.40	5.50	Good				655m	South West
GW106 848	10BL164 447, 10WA11 3793	Spear	Private	Domestic	Domestic		06/12/2004	4.00	4.00	Good	2.00	0.500		662m	South West
GW106 434	10BL163 963, 10WA11 3709	Spear	Private	Domestic	Domestic		11/10/2004	6.00	6.00	Good	3.00	0.500		674m	North
GW103 228	10BL157 324, 10WA11 3142	Bore		Domestic	Domestic		24/11/1995	6.00	6.00					675m	North
GW107 953	10BL600 086, 10WA11 4097	Spear		Domestic	Domestic		01/01/1985	4.00			2.00	0.500		680m	South West
GW108 493	10BL600 740, 10WA11 4208	Spear	Private	Domestic	Domestic		27/12/2006	6.00	6.00		3.00	0.500		680m	North
GW108 947	10BL601 977, 10WA11 4426	Spear	Private	Domestic	Domestic		19/06/2008	7.00						681m	North
GW108 522	10BL600 827, 10WA11 4231	Spear	Private	Domestic	Domestic		27/12/2006	3.00	3.00	Good	1.00	0.500		684m	West
GW106 703	10BL164 283, 10WA11 3770	Spear	Private	Domestic	Domestic		03/12/2004	4.00	4.00		2.00	0.500		685m	South
GW109 113	10BL602 302, 10WA11 4482	Spear	Private	Domestic	Domestic		25/07/2008	4.00		Good	2.00	0.500		686m	West
GW023 986	10BL017 640, 10WA11 2921	Spear	Private	Domestic	General Use		01/02/1966	2.40	2.40	Brackis h				689m	South West
GW106 578	10BL163 908, 10WA11 3705	Spear	Private	Domestic	Domestic		16/09/2004	4.00	4.00	Good	2.00	0.500		689m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW023 966	10BL016 398, 10WA11 2809	Spear	Private	Domestic	Genera l Use		01/09/1965	7.30	7.30	Good				690m	South
GW110 876	10BL601 606, 10WA11 4387	Spear	Private	Domestic	Domestic		01/01/2007	6.00			2.00	2.500		690m	South West
GW114 902	10WA11 9176	Spear	Private	Domestic	Domestic		08/04/2015	5.00	5.00		1.50	0.500		690m	South West
GW107 479	10BL164 158, 10WA11 3743	Spear	Private	Domestic	Domestic		20/01/2005	6.00	6.00	Good	2.00	0.500		692m	South
GW106 804	10BL163 994, 10WA11 3716	Spear	Private	Domestic	Domestic		03/12/2004	4.00	4.00	Good	2.00	0.500		696m	South
GW106 805	10BL163 993, 10WA11 3715	Spear	Private	Domestic	Domestic		03/12/2004	4.00	4.00	Good	2.00	0.500		696m	South
GW105 773	10BL162 608, 10WA11 3458	Spear	Private	Domestic	Domestic		25/02/2004	4.00	4.00		1.50	0.500		701m	South
GW024 375	10BL018 433, 10WA11 2946	Spear	Private	Domestic	Domestic		01/01/1966	3.60	3.70	Fair				706m	North West
GW107 065	10BL164 704, 10WA11 3836	Spear	Private	Domestic	Domestic		26/04/2005	6.00	6.00		2.00	0.500		706m	South
GW101 154	10BL157 029, 10WA11 3098	Spear	Private	Domestic	Domestic		05/09/1995	4.88	4.88	Good	1.83	0.800		708m	South West
GW109 053	10BL602 166, 10WA11 4457	Spear	Private	Domestic	Domestic		15/07/2008	5.80		Good	3.36	1.000		711m	South
GW107 599	10BL165 628, 10WA11 4006	Spear	Private	Domestic	Domestic		30/10/2005	6.00	6.00					721m	North West
GW025 681	10BL018 848, 10WA11 2971	Spear	Private	Domestic	General Use		01/09/1966	6.00	6.10	Good				722m	South
GW105 310	10BL163 296, 10WA11 3554	Bore		Domestic	Domestic		07/07/2004	4.00	4.00	Good	2.00	0.500		723m	North
GW104 637	10BL161 203, 10WA11 3330	Bore	Private	Domestic	Domestic		12/12/2002	7.32	7.32		4.22	1.000		724m	North
GW111 562	10BL600 950	Spear	Private	Domestic	Domestic		20/01/2007	6.00	6.00					725m	South West
GW107 974	10BL165 026, 10WA11 3906	Spear		Domestic	Domestic		10/12/2005	3.00	3.00					726m	South
GW111 467	10BL604 409, 10WA11 4614	Spear	Private	Domestic	Domestic		22/12/2010	6.00	6.00		2.00	0.500		730m	North West
GW110 867	10BL603 605, 10WA11 4591	Spear	Private	Domestic	Domestic		12/04/2010	6.00	6.00	Good	4.00	0.150		731m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW112 351	10BL602 183, 10WA11 4461	Spear	Private	Domestic	Domestic		08/11/2007	5.80	5.80		1.22	1.000		732m	South
GW101 889	10BL158 950, 10WA11 3267	Bore		Domestic	Domestic		24/11/1998	5.19	5.19	Good	1.83	1.000		734m	South
GW028 206	10BL020 775	Spear	Local Govt	Recreation (groundwater)	Irrigation		01/02/1966	5.40	5.50	Good				742m	North
GW107 208	10BL164 628, 10WA11 3822	Spear	Private	Domestic	Domestic		19/07/2005	4.00	4.00		1.00	0.500		744m	South
GW024 371	10BL018 577, 10WA11 2957	Spear	Private	Domestic	General Use		01/08/1966	4.20	4.30	Good				752m	North
GW025 714	10BL016 399, 10WA11 2810	Bore	Private	Domestic	General Use		01/11/1965	3.00	3.00	Good				760m	South
GW028 208	10BL020 774, 10WA11 4761	Spear	Local Govt	Recreation (groundwater)	Irrigation		01/04/1966	6.00	6.10	Good				765m	North
GW112 490	10WA11 8670	Spear	Private	Domestic	Domestic		27/05/2013	7.00	7.00		4.00	0.500		779m	North
GW107 215	10BL164 992, 10WA11 3900	Spear	Private	Domestic	Domestic		14/06/2005	4.00	4.00		2.00	0.500		785m	South West
GW107 845	10BL164 775, 10WA11 3857	Spear	Private	Domestic	Domestic		12/07/2005	5.00	5.00	Good	2.00	0.500		787m	South
GW024 071	10BL017 280, 10WA11 2879	Spear	Private	Domestic	General Use		01/11/1965	4.80						788m	South West
GW111 613	10BL163 692, 10WA11 3652	Spear	Private	Domestic	Domestic		06/10/2004	6.00	6.00	good	3.00	0.500		789m	North
GW107 729	10BL164 521, 10WA11 3806	Spear	Private	Domestic	Domestic		10/01/2006	5.00	5.00					797m	South
GW108 925	10BL601 994, 10WA11 4428	Spear	Private	Domestic	Domestic		18/06/2008	6.00						801m	South West
GW107 861	10BL600 064, 10WA11 4089	Spear	Private	Domestic	Domestic		21/03/2006	6.00	6.00					802m	North
GW106 837	10BL162 689, 10WA11 3473	Spear	Private	Domestic	Domestic		15/03/2005	3.00						803m	South West
GW024 117	10BL018 508, 10WA11 2953	Spear	Private	Domestic	Genera l Use		01/11/1965	5.40	5.50	Good				804m	North
GW106 729	10BL164 276, 10WA11 3769	Spear	Private	Domestic	Domestic		29/11/2004	4.00	4.00	Good		0.500		807m	South
GW025 721	10BL016 431, 10WA11 2818	Spear	Private	Domestic	Genera l Use		01/11/1965	3.00						815m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 170	10BL165 257, 10WA11 3942	Spear	Private	Domestic	Domestic		18/07/2005	4.00	4.00	Good	1.00	0.500		815m	South West
GW106 458	10BL162 134, 10WA11 3353	Spear	Private	Domestic	Domestic		15/11/2004	4.00	4.00	Good	2.00	0.500		818m	South West
GW072 912		Spear	Private		Domestic		12/12/1994	6.00	6.00	Good				819m	South West
GW108 274	10BL600 238, 10WA11 4127	Spear	Private	Domestic	Domestic		13/11/2006	4.88	4.88		1.88	1.000		821m	South West
GW105 752	10BL162 364, 10WA11 3414	Spear	Private	Domestic	Domestic		05/01/2004	7.32	7.32		3.72	1.000		823m	South West
GW106 263	10BL162 837, 10WA11 3494	Spear	Private	Domestic	Domestic		17/08/2004	6.00	6.00	Good	2.00	0.500		825m	South
GW109 064	10BL602 157, 10WA11 4456	Spear	Private	Domestic	Domestic		16/07/2008	4.00		Good	2.00	0.500		827m	South
GW024 669	10BL018 797, 10WA11 2966	Spear	Private	Domestic	General Use		01/04/1966	4.50	4.60					828m	North
GW025 559	10BL016 387, 10WA11 2808	Spear	Private	Domestic	General Use		01/11/1965	3.00	3.00	Good				830m	South West
GW107 156	10BL164 854, 10WA11 3873	Bore		Domestic			30/05/2006							831m	North
GW023 136	10BL016 582, 10WA11 2826	Spear	Private	Domestic	General Use		01/01/1965	3.20	3.20	Good				832m	North
GW023 185	10BL016 549, 10WA11 2824	Spear	Private	Domestic, General Use	General Use		01/10/1965	4.20	4.30	Good				833m	North
GW107 118	10BL164 853, 10WA11 3872	Spear	Private	Domestic	Domestic		28/05/2005	6.00	6.00					834m	North
GW108 977	10BL602 111, 10WA11 4442	Spear	Private	Domestic	Domestic		27/06/2008	4.00		Good	2.00	0.500		837m	South
GW111 123	10BL601 549, 10WA11 4371	Spear	Private	Domestic	Domestic		01/01/2007	8.00	8.00		2.00	2.500		837m	North
GW023 125	10BL016 583, 10WA11 2827	Spear	Private	Domestic	General Use		01/11/1965	5.10	5.20	Good				839m	North
GW101 586	10BL158 899, 10WA11 3264	Bore		Domestic	Domestic		31/10/1998	5.80	5.80	Good		1.000		841m	South
GW023 573	10BL017 669, 10WA11 2927	Spear	Private	Domestic	General Use		01/03/1966	4.80	4.90	Good				842m	North
GW106 136	10BL162 163, 10WA11 3358	Spear	Private	Domestic	Domestic		07/06/2004	4.00	4.00	Good	2.00	0.500		845m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW111 442	10BL600 911, 10WA11 4242	Spear	Private	Domestic	Domestic		26/02/2007	4.25	4.27	good	2.13	1.000		845m	South West
GW025 703	10BL016 459, 10WA11 2821	Spear	Private	Domestic	Domestic		01/11/1957	6.00	6.10					847m	North
GW106 092	10BL162 895, 10WA11 3506	Spear	Private	Domestic	Domestic		05/04/2004	4.58	4.58		2.13	1.000		849m	North
GW106 251	10BL163 420, 10WA11 3579	Bore		Domestic	Domestic		19/07/2005	7.00						849m	North
GW106 382	10BL163 631, 10WA11 3637	Spear	Private	Domestic	Domestic		15/09/2004	6.00	6.00		3.00	0.500		849m	North
GW108 266	10BL600 706, 10WA11 4201	Spear	Private	Domestic	Domestic		08/11/2006	6.00	6.00		3.00	0.500		850m	North
GW106 957	10BL164 731, 10WA11 3845	Spear	Private	Domestic	Domestic		06/04/2005	7.32	7.32		2.44	1.000		855m	North
GW027 339	10BL019 944, 10WA11 2995	Spear	Private	Domestic	General Use		01/04/1967	3.00	3.00					857m	South
GW106 038	10BL163 062, 10WA11 3523	Spear	Private	Domestic	Domestic		10/06/2004	7.00	7.00					858m	South
GW101 474	10BL158 447, 10WA11 3239	Spear	Private	Domestic	Domestic		16/02/1998	4.27	4.27	Good	2.13	0.100		859m	South
GW108 290	10BL600 568, 10WA11 4170	Spear	Private	Domestic	Domestic		30/01/2006	6.00	6.00		3.00	0.500		865m	North
GW023 547	10BL017 161, 10WA11 2869	Spear	Private	Domestic	General Use		01/03/1966	3.30	3.40					866m	South West
GW108 529	10BL600 891, 10WA11 4239	Spear	Private	Domestic	Domestic		15/01/2007	6.00	6.00	Good	4.00	0.500		866m	North
GW105 715	10BL162 355, 10WA11 3412	Bore	Private	Domestic	Domestic		05/01/2004	4.00	4.00	Good	2.00	0.500		877m	South
GW109 134	10BL602 100, 10WA11 4441	Spear	Private	Domestic	Domestic		31/07/2008	4.00		Good	2.00	0.500		879m	South
GW111 440	10BL600 921, 10WA11 4244	Spear	Private	Domestic	Domestic		12/02/2007	5.18	5.19	good	1.83	1.000		882m	South West
GW108 733	10BL601 453, 10WA11 4354	Spear	Private	Domestic	Domestic		20/04/2007	6.00	6.00	Good	4.00	0.500		884m	North
GW106 963	10BL164 629, 10WA11 3823	Spear	Private	Domestic	Domestic		01/02/2003	6.00	6.00					885m	North
GW026 865	10BL016 986, 10WA11 2856	Spear	Private	Domestic	General Use		01/01/1966	2.40	2.40					889m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 280	10BL163 338, 10WA11 3562	Spear	Private	Domestic	Domestic		19/06/2004	6.41	6.41		3.36	1.000		890m	North
GW113 044	10BL602 243, 10WA11 4471	Spear	Private	Domestic	Domestic		02/08/2007	7.32	7.32	Good	2.74	1.000		891m	North
GW105 680	10BL162 605, 10WA11 3457	Spear	Private	Domestic	Domestic		25/01/2004	6.41	6.41		3.36	1.000		892m	North
GW106 377	10BL163 863, 10WA11 3696	Spear	Private	Domestic	Domestic		08/09/2004	4.00	4.00		2.00	0.500		892m	South West
GW107 920	10BL163 968, 10WA11 3710	Spear	Private	Domestic	Domestic		10/02/2006	6.00	6.00					893m	North
GW109 106	10BL602 392, 10WA11 4503	Spear	Private	Domestic	Domestic		23/07/2008	6.71		Good	3.35	1.000		897m	North
GW111 226	10BL604 267, 10WA11 4607	Spear	Private	Domestic	Domestic		02/11/2010	5.49	5.49	good	1.52			899m	South West
GW105 741	10BL162 442, 10WA11 3428	Bore	Private	Domestic	Domestic		13/02/2004	4.00	4.00	Good	2.00	0.500		907m	South West
GW115 044	10WA11 9107	Spear	Private	Domestic	Domestic	Di Sisto	16/02/2015	6.00	6.00		3.00	0.500		910m	North
GW106 317	10BL163 377, 10WA11 3568	Bore		Domestic			15/08/2005							915m	West
GW101 678	10BL158 815, 10WA11 3263	Bore		Domestic	Domestic		29/09/1998	6.00	6.00					918m	South West
GW114 841	10WA11 9048	Spear	Private	Domestic	Domestic		02/10/2014	7.00	7.00		1.50	0.500		918m	South West
GW024 245	10BL018 846, 10WA11 2969	Spear	Private	Domestic	Genera l Use		01/11/1965	5.40	5.50	Good				924m	South
GW106 561	10BL164 085, 10WA11 3724	Spear	Private	Domestic	Domestic		15/11/2004	4.00	4.00	Good	2.00	0.500		927m	South
GW106 879	10BL164 726, 10WA11 3843	Spear	Private	Domestic	Domestic		31/01/2005	5.49	5.49	Good	2.44	1.000		935m	South West
GW106 204	10BL163 535, 10WA11 3603	Spear	Private	Domestic	Domestic		10/08/2004	6.00	6.00		2.00	0.500		943m	South West
GW114 806	10BL604 240	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2010	10.90	10.90					943m	West
GW111 003	10BL604 001, 10WA11 4601	Spear	Private	Domestic	Domestic		11/06/2010	4.00	4.00	good	2.00	0.500		946m	South
GW106 961	10BL164 641, 10WA11 3825	Spear	Private	Domestic	Domestic		04/03/2005	7.00	7.00	Good	5.00	0.500		947m	North
GW114 808	10BL604 240	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2010	8.00	8.00					949m	West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 104	10BL162 597, 10WA11 3456	Bore	Private	Domestic	Domestic		05/01/2004	7.00	7.00					953m	North
GW108 533	10BL600 959, 10WA11 4250	Spear	Private	Domestic	Domestic		17/01/2007	6.00	6.00		4.00	0.500		958m	North
GW109 942	10BL601 034, 10WA11 4268	Spear	Private	Domestic	Domestic		31/01/2009	6.71	6.71	Good	3.50	1.000		958m	North
GW114 807	10BL604 240	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2010	9.00	9.00					958m	West
GW103 229	10BL157 357, 10WA11 3149	Bore		Domestic	Domestic		09/08/1995	6.00	6.00					960m	North
GW108 948	10BL601 480, 10WA11 4360	Spear	Private	Domestic	Domestic		19/06/2008	4.00		Good	2.00	0.500		964m	South West
GW107 177	10BL163 057, 10WA11 3522	Spear	Private	Domestic	Domestic		24/06/2004	7.63	7.63		4.58	1.000		968m	North
GW107 505	10BL165 443, 10WA11 3979	Spear	Private	Domestic	Domestic		03/10/2005	5.00	5.00	Good	3.00	0.500		970m	North
GW024 366	10BL018 712, 10WA11 2965	Spear	Private	Domestic	Genera l Use		01/01/1966	4.50	4.60	Good				976m	North
GW108 696	10BL601 482, 10WA11 4361	Spear	Private	Domestic	Domestic		11/05/2007	7.00	7.00	Good	5.00	0.500		981m	North
GW107 019	10BL164 940, 10WA11 3896	Spear	Private	Domestic	Domestic		19/04/2005	7.00	7.00	Good	5.00	0.500		982m	North
GW112 400	10BL163 672, 10WA11 3646	Spear	Private	Domestic	Domestic		01/01/2004	6.00	6.00		5.00	0.500		983m	South West
GW111 315	10BL600 492, 10WA11 4158	Spear	Private	Domestic	Domestic		03/08/2006	4.00	4.00	good	2.00	0.500		984m	South
GW106 415	10BL163 168, 10WA11 3534	Spear	Private	Domestic	Domestic		28/08/2004	6.10	6.10		3.50	1.000		986m	North
GW100 440	10BL157 889, 10WA11 3185	Bore		Domestic			01/01/1995	6.30	6.30		4.50	0.670		988m	North
GW103 780	10BL156 560, 10WA11 3070	Bore		Domestic	Domestic		20/03/1995	7.62	7.62	Good				989m	North
GW107 051	10BL164 886, 10WA11 3879	Spear	Private	Domestic	Domestic		25/03/2005	7.00	7.00	Good	3.00	0.500		989m	North
GW106 371	10BL163 791, 10WA11 3683	Spear	Private	Domestic	Domestic		14/09/2004	5.00	5.00		2.00	0.500		991m	North
GW106 053	10BL162 467, 10WA11 3433	Spear	Private	Domestic	Domestic		07/06/2004	6.10	6.10		3.09	1.000		993m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW108 536	10BL601 013, 10WA11 4264	Spear	Private	Domestic	Domestic		25/01/2007	4.00	4.00	Good	2.00	0.500		997m	South West
GW111 420	10BL601 660, 10WA11 4401	Spear	Private	Domestic	Domestic		15/05/2007	9.15	9.15	good	5.18	1.000		997m	North
GW023 475		Spear	Private		General Use		01/02/1966	4.50	4.60					999m	South West
GW106 054	10BL162 544, 10WA11 3444	Spear	Private	Domestic	Domestic		10/03/2004	6.10	6.10		1.52	1.000		999m	North
GW111 237	10BL604 283, 10WA11 4608	Spear	Private	Domestic	Domestic		01/01/1995	6.00	6.00	good	3.00	0.500		1002m	North
GW107 891	10BL600 003, 10WA11 4078	Spear	Private	Domestic	Domestic		08/02/2006	7.00	7.00		5.00	0.500		1003m	North
GW107 836	10BL165 861, 10WA11 4050	Spear	Private	Domestic	Domestic		21/01/2006	5.00	5.00	Good	2.00	1.000		1006m	South West
GW110 228	10BL600 354, 10WA11 4139	Spear	Private	Domestic	Domestic		14/05/2006	8.85	8.85	Good	2.13	1.000		1007m	North
GW024 069	10BL017 471, 10WA11 2899	Spear	Private	Domestic	General Use		01/02/1966	4.50						1011m	South West
GW107 880	10BL600 102, 10WA11 4100	Spear	Private	Domestic	Domestic		20/02/2006	4.00	4.00		2.00	0.500		1011m	South
GW100 664	10BL157 648, 10WA11 3171	Spear	Private	Domestic	Domestic		20/05/1996	5.80	5.80	Good	2.29	1.000		1014m	North
GW110 842	10BL164 519, 10WA11 3805	Spear	Private	Domestic	Domestic		24/02/2005	8.54	8.54	Good	2.13	1.000		1017m	North
GW023 458	10BL016 718, 10WA11 2839	Spear	Private	Domestic	General Use		01/11/1965	4.80	4.90	Good				1027m	South West
GW106 422	10BL163 475, 10WA11 3588	Bore		Domestic			01/09/2005							1037m	North
GW107 273	10BL163 538, 10WA11 3604	Bore	Private	Domestic	Domestic		10/08/2005	4.00	4.00		1.60	0.250		1037m	South West
GW106 413	10BL163 252, 10WA11 3546	Spear	Private	Domestic	Domestic		28/08/2004	6.10	6.10		3.50	1.000		1038m	North
GW110 566	10BL603 431, 10WA11 4582	Spear	Private	Domestic	Domestic		10/11/2009	4.00	4.00	Good	2.00	0.500		1045m	South West
GW111 020	10BL601 211, 10WA11 4302	Spear	Private	Domestic	Domestic		01/01/2007	4.00	4.00					1048m	North
GW106 619	10BL162 268, 10WA11 3385	Spear	Private	Domestic	Domestic		11/11/2004	4.00	4.00		2.00	0.500		1049m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW111 439	10BL600 922, 10WA11 4245	Spear	Private	Domestic	Domestic		06/02/2007	7.32		good		1.000		1054m	North
GW107 824	10BL600 124, 10WA11 4103	Spear	Private	Domestic	Domestic		21/03/2006	5.00	5.00	Good	2.00	0.500		1055m	South West
GW107 846	10BL164 799, 10WA11 3861	Spear	Private	Domestic	Domestic		13/02/2006	6.00	6.00	Good	4.00	0.500		1058m	North West
GW109 137	10BL602 234, 10WA11 4467	Spear	Private	Domestic	Domestic		04/08/2008	6.00						1059m	North
GW028 300	10BL020 311, 10WA11 2996	Spear	Private	Domestic	Genera l Use		01/01/1966	2.50	2.60	Good				1064m	West
GW111 704	10BL603 038, 10WA11 4566	Spear	Private	Domestic	Domestic		09/05/2009	6.71	6.71	good	3.50	1.000		1064m	North
GW110 490	10BL600 144, 10WA11 4111	Bore	Private	Domestic	Domestic		01/01/2006	8.00			2.00	2.500		1065m	South West
GW106 387	10BL163 564, 10WA11 3612	Spear	Private	Domestic	Domestic		05/09/2004	7.32	7.32		4.27	1.000		1066m	North
GW115 751					Domestic		28/11/2016	4.00			2.00			1073m	South
GW110 728	10BL601 291, 10WA11 4314	Spear	Private	Domestic	Domestic		01/01/1995	6.00			5.00			1074m	South West
GW106 408	10BL163 491, 10WA11 3594	Spear	Private	Domestic	Domestic		30/08/2004	4.00	4.00	Good	2.00	0.500		1082m	South West
GW106 229	10BL163 724, 10WA11 3662	Spear	Private	Domestic	Domestic		05/08/2004	6.00	6.00		1.50	0.500		1083m	South West
GW109 138	10BL165 470, 10WA11 3984	Excav ation	Private	Domestic	Domestic		04/08/2008	4.00		Good	2.00	0.500		1089m	South West
GW110 446	10BL602 817, 10WA11 4541	Spear	Private	Domestic	Domestic		02/03/2009	6.00	6.00	Good	2.50	0.500		1093m	North
GW108 935	10BL601 872, 10WA11 4418	Spear	Private	Domestic	Domestic		19/06/2008	8.00						1094m	South West
GW025 558	10BL016 296, 10WA11 2804	Bore	Private	Domestic	General Use		01/01/1938	5.90	5.90					1100m	North
GW105 819	10BL162 868, 10WA11 3503	Spear	Private	Domestic	Domestic		10/03/2004	4.00	4.00		2.00	0.500		1100m	South
GW108 049	10BL600 313, 10WA11 4135	Spear	Private	Domestic	Domestic		14/06/2006	4.00	4.00		2.00	0.500		1100m	South West
GW101 815	10BL157 323, 10WA11 3141	Bore		Domestic	Domestic		24/11/1995	5.50	5.50					1101m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 773	10BL164 706, 10WA11 3838	Spear	Private	Domestic	Domestic		14/03/2005	6.10	6.10		2.13	1.000		1107m	South West
GW108 304	10BL600 704, 10WA11 4200	Bore	Private	Domestic	Domestic		30/07/2007	16.00	16.00					1109m	South West
GW106 252	10BL163 418, 10WA11 3578	Bore		Domestic			19/07/2005							1110m	South West
GW105 589	10BL162 249, 10WA11 3380	Spear	Private	Domestic	Domestic		03/11/2003	4.00	4.00	Good	1.00	0.500		1116m	North
GW106 976	10BL163 487, 10WA11 3592	Spear	Private	Domestic	Domestic		17/02/2005	4.00	4.00	Good	2.00	0.500		1117m	South West
GW110 655	10BL600 728, 10WA11 4206	Spear	Private	Domestic	Domestic		01/01/2007	8.00			2.00	2.500		1117m	South West
GW106 713	10BL162 320, 10WA11 3402	Spear	Private	Domestic	Domestic		23/11/2004	4.00	4.00		2.00	0.500		1119m	South West
GW106 767	10BL162 331, 10WA11 3405	Spear	Private	Domestic	Domestic		28/12/2004	6.00	6.00					1128m	North
GW023 995	10BL017 418, 10WA11 2895	Spear	Private	Domestic	Genera l Use		01/11/1965	5.70	5.80	Good				1132m	North
GW109 129	10BL602 194, 10WA11 4463	Spear	Private	Domestic	Domestic		28/07/2008	4.00		Good	2.00	0.500		1135m	South West
GW024 352	10BL018 507, 10WA11 2952	Spear	Private	Domestic	Genera l Use		01/12/1965	5.60	5.60	Good				1138m	North
GW109 936	10BL602 776, 10WA11 4535	Bore	Private	Domestic	Domestic		09/12/2008	7.50	7.50		2.00	0.500		1141m	South West
GW101 814	10BL157 322, 10WA11 3140	Bore		Domestic	Domestic		30/11/1995	5.00	5.00					1142m	North
GW031 412	10BL024 351	Spear	Local Govt	Recreation (groundwater	Irrigation		01/04/1969	6.40	6.40	Good				1145m	South
GW108 438	10BL165 082, 10WA11 3920	Spear	Private	Domestic	Domestic		01/07/2005	8.00	8.00		3.00	0.500		1146m	South West
GW107 590	10BL165 662, 10WA11 4013	Spear	Private	Domestic	Domestic		26/10/2005	4.00	4.00	Good	2.00	0.500		1148m	North
GW024 675	10BL018 993, 10WA11 2978	Spear	Private	Domestic	General Use		01/09/1966	5.40						1151m	North
GW026 481	10BL018 963, 10WA11 2976	Spear	Private	General Use	Genera l Use		01/12/1966	4.20	4.30					1153m	South West
GW106 832	10BL164 793, 10WA11 3860	Spear	Private	Domestic	Domestic		29/03/2005	5.80	5.80		3.66	1.000		1155m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW024 397	10BL017 638, 10WA11 2919	Spear	Private	Domestic	General Use			3.50	3.50	Very Good				1158m	South West
GW105 590	10BL162 288, 10WA11 3394	Bore		Domestic	Domestic		10/03/2005							1161m	South West
GW101 871	10BL157 462, 10WA11 3159	Bore		Domestic	Domestic		29/01/1996	5.80	5.80	Good	1.83	1.000		1170m	North
GW105 761	10BL162 540, 10WA11 3442	Spear	Private	Domestic	Domestic		06/01/2004	7.00	7.00	Good	5.00	0.500		1175m	North
GW072 776		Spear	Private		Domestic		31/12/1995	2.50						1177m	South West
GW101 025	10BL157 001, 10WA11 3097	Spear	Private	Domestic	Domestic		17/09/1995	5.00	5.00					1178m	North
GW107 648	10BL165 728, 10WA11 4034	Spear	Private	Domestic	Domestic		02/11/2005	4.00	4.00	Good	2.00	0.500		1179m	South West
GW108 980	10BL602 126, 10WA11 4446	Spear	Private	Domestic	Domestic		27/06/2008	6.00			2.00	0.500		1179m	South West
GW108 222	10BL600 378, 10WA11 4144	Spear	Private	Domestic	Domestic		14/07/2006	6.00	6.00		2.00	0.500		1180m	North
GW105 516	10BL162 114, 10WA11 3350	Bore		Domestic	Domestic		20/10/2003	8.24	8.24		5.18	1.000		1183m	North
GW110 420	10BL602 975, 10WA11 4563	Spear	Private	Domestic	Domestic		30/03/2009	6.00	6.00	Good	4.00	0.500		1183m	South West
GW106 375	10BL163 871, 10WA11 3698	Spear	Private	Domestic	Domestic		17/08/2004	6.00	6.00	Good	3.00	0.500		1184m	North
GW105 822	10BL162 866, 10WA11 3502	Spear	Private	Domestic	Domestic		10/03/2004	4.00	4.00	Good	2.00	0.500		1188m	South West
GW107 851	10BL163 992, 10WA11 3714	Spear	Private	Domestic	Domestic		12/11/2004	4.00	4.00	Good	2.00	0.500		1189m	South West
GW026 485	10BL019 150, 10WA11 2981	Spear	Private	Domestic	General Use		01/12/1965	5.30						1191m	North
GW108 535	10BL601 008, 10WA11 4262	Spear	Private	Domestic	Domestic		15/01/2007	7.00	7.00	Good	4.00	0.500		1194m	North
GW108 349	10BL600 487, 10WA11 4157	Spear	Private	Domestic	Domestic		03/08/2006	4.00	4.00		2.00	0.500		1197m	South
GW108 402	10BL600 687, 10WA11 4195	Spear	Private	Domestic	Domestic		15/11/2006	8.54	8.54	Good	3.36	1.000		1201m	North
GW109 029	10BL161 849, 10WA11 4715	Spear	Private	Industrial	Industrial		11/07/2008	4.00	4.00	Good	2.00	0.500		1206m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW110 866	10BL603 606, 10WA11 4592	Spear	Private	Domestic	Domestic		29/04/2010	6.00	6.00	Good	2.00	0.500		1216m	South West
GW106 276	10BL163 542, 10WA11 3606	Spear	Private	Domestic	Domestic		05/09/2004	5.00	5.00					1223m	North
GW107 270	10BL163 739, 10WA11 3667	Spear	Private	Domestic	Domestic		30/09/2004	5.50	5.50					1226m	South West
GW106 396	10BL163 456, 10WA11 3583	Spear	Private	Domestic	Domestic		05/08/2004	6.00	6.00		1.50	0.500		1231m	South West
GW023 289	10BL016 773, 10WA11 2844	Spear	Private	Domestic	General Use		01/11/1965	3.60						1232m	North
GW110 382	10BL600 116, 10WA11 4101	Bore	Private	Domestic	Domestic		01/01/2007	8.00				2.500		1234m	South
GW023 997	10BL017 869, 20BL017 407	Spear	Private	Domestic, Irrigation, Not Known, Stock	General Use		01/02/1966	4.20	4.30					1238m	South West
GW107 298	10BL165 094, 10WA11 3922	Spear	Private	Domestic	Domestic		26/08/2005	6.00	6.00					1243m	North
GW105 586	10BL162 242, 10WA11 3375	Spear	Private	Domestic	Domestic		17/11/2003	4.00	4.00	Good	1.50	0.500		1246m	South West
GW105 728	10BL162 278, 10WA11 3390	Bore	Private	Domestic	Domestic		17/02/2004	6.00	6.00	Good	3.00	0.500		1249m	North
GW111 764	10BL165 514, 10WA11 3986	Spear	Private	Domestic	Domestic		01/11/2005	7.00	7.00		5.00	0.500		1250m	South West
GW106 484	10BL163 846, 10WA11 3692	Spear	Private	Domestic	Domestic		25/10/2004	4.00	4.00	Good	2.00	0.500		1251m	South West
GW107 669	10BL164 346, 10WA11 3778	Spear	Private	Domestic	Domestic		24/11/2005	6.00	6.00	Good	4.00	0.500		1251m	North
GW109 094	10BL162 230, 10WA11 3371	Spear	Private	Domestic	Domestic		22/07/2008	7.00		Good	5.00	0.500		1255m	North
GW106 007	10BL163 131, 10WA11 3530	Spear	Private	Domestic	Domestic		16/06/2004	7.00	7.00	Good	5.00	0.500		1258m	North
GW106 456	10BL162 228, 10WA11 3370	Spear	Private	Domestic	Domestic		01/01/1995	6.00	6.00					1259m	North
GW107 020	10BL164 921, 10WA11 3891	Spear	Private	Domestic	Domestic		01/06/2001	5.00	5.00					1259m	North West
GW110 323	10BL600 231, 10WA11 4126	Spear	Private	Domestic	Domestic		04/04/2006	9.15	9.15		2.35	1.000		1260m	North
GW106 898	10BL164 345, 10WA11 3777	Spear	Private	Domestic	Domestic		01/02/2005	3.96	3.97	Good	2.13	1.000		1262m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW072 078	10BL151 405, 10WA11 3007	Spear	Private	Domestic	Domestic		30/01/1993	6.00	6.00					1267m	South West
GW112 428	10BL603 830, 10WA11 4598	Spear	Private	Domestic	Domestic		16/05/2010	6.00	6.00	Good	1.50	0.500		1274m	South West
GW106 020	10BL162 587, 10WA11 3455	Spear	Private	Domestic	Domestic		17/03/2004	4.00	4.00	Good	2.00	0.500		1280m	South West
GW108 563	10BL601 311, 10WA11 4315	Spear	Private	Domestic	Domestic		12/02/2007	8.23	8.23	Good	1.83	1.000		1284m	North
GW107 458	10BL165 663, 10WA11 4014	Spear	Private	Domestic	Domestic		24/10/2005	6.00	6.00	Good	2.00	0.500		1285m	South West
GW025 711	10BL016 418, 10WA11 2813	Spear	Private	Domestic	General Use		01/01/1959	4.80	4.90	Very Good				1289m	North
GW108 652	10BL601 192, 10WA11 4296	Spear	Private	Domestic	Domestic		06/02/2007	7.00	7.00		5.00	0.500		1290m	North
GW108 513	10BL600 718, 10WA11 4204	Spear	Private	Domestic	Domestic		29/11/2000	4.00	4.00	Good	2.00	0.500		1291m	South West
GW106 367	10BL163 800, 10WA11 3689	Spear	Private	Domestic	Domestic		30/09/2004	4.00	4.00		2.00	0.500		1296m	South West
GW106 034	10BL162 784, 10WA11 3485	Spear	Private	Domestic	Domestic		23/03/2004	4.00	4.00	Good	2.00	0.150		1297m	South West
GW108 661	10BL601 547, 10WA11 4370	Spear	Private	Domestic	Domestic		22/03/2007	7.00	7.00	Good	2.00	0.500		1298m	South West
GW027 330	10BL018 976	Spear	Private	Domestic	General Use		01/09/1966	5.40		Good				1309m	South West
GW108 302	10BL600 694, 10WA11 4198	Spear	Private	Domestic	Domestic		28/11/2006	4.58	4.58		2.13	1.000		1309m	South West
GW107 695	10BL165 292, 10WA11 3949	Spear	Private	Domestic	Domestic		20/08/2005	7.50	7.50					1310m	North
GW108 549	10BL601 197, 10WA11 4299	Spear	Private	Domestic	Domestic		19/02/2007	7.00	7.00	Good	5.00	0.500		1310m	North
GW106 356	10BL163 938, 10WA11 3707	Spear	Private	Domestic	Domestic		14/09/2004	4.00	4.00	Good	2.00	0.500		1311m	South West
GW023 571	10BL017 592, 10WA11 2916	Spear	Private	Domestic	General Use			3.60						1314m	South West
GW100 520	10BL157 638, 10WA11 4655	Spear	Private	Recreation (groundwater)	Recreation (groundwate r)		01/07/1966	7.00	7.00					1319m	North
GW108 816	10BL601 791, 10WA11 4416	Spear	Private	Domestic	Domestic		29/05/2007	8.54	8.54	Good	1.83	1.000		1319m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 369	10BL163 798, 10WA11 3687	Spear	Private	Domestic	Domestic		20/08/2004	6.00	6.00	Good	2.00	0.500		1324m	South West
GW106 368	10BL163 799, 10WA11 3688	Spear	Private	Domestic	Domestic		07/04/2004	6.00	6.00		2.00	0.500		1328m	South West
GW107 722	10BL162 466, 10WA11 3432	Spear	Private	Domestic	Domestic		18/01/2004	6.71	6.71	Good	3.05	1.000		1329m	North
GW106 655	10BL164 351, 10WA11 3780	Spear	Private	Domestic	Domestic		19/11/2004	4.00	4.00	Good	2.00	0.500		1331m	South West
GW026 388	10BL018 052, 10WA11 2937	Spear	Private	Domestic	General Use		01/03/1966	4.20	4.30					1332m	North
GW032 031	10BL023 897, 10WA11 2998	Bore	Private	Domestic	Domestic		01/10/1969	3.00	3.00			0.440		1333m	South West
GW108 550	10BL601 193, 10WA11 4297	Spear	Private	Domestic	Domestic		19/02/2007	7.00	7.00	Good	5.00	0.500		1333m	North
GW112 352	10BL602 148, 10WA11 4452	Spear	Private	Domestic	Domestic		10/02/2008	8.00	8.00		3.00	0.250		1335m	North
GW108 574	10BL601 420, 10WA11 4344	Spear	Private	Domestic	Domestic		10/03/2007	6.10	6.10	Good	2.75	1.000		1339m	North
GW111 437	10BL600 924, 10WA11 4247	Spear	Private	Domestic	Domestic		26/07/2007	4.88	4.88	good	2.13	1.000		1339m	South West
GW105 769	10BL162 614, 10WA11 3459	Spear	Private	Domestic	Domestic		14/02/2004	4.00	4.00	Good	2.00	0.500		1340m	South West
GW106 922	10BL162 580, 10WA11 3451	Spear	Private	Domestic	Domestic		01/07/2004	3.70	3.70		1.60	0.350		1341m	South West
GW105 460	10BL162 147, 10WA11 3354	Bore		Domestic	Domestic		22/10/2003	4.00	4.50	Good	1.50	0.500		1346m	North
GW107 513	10BL165 583, 10WA11 3997	Spear	Private	Domestic	Domestic		08/10/2005	4.00	4.00	Good	2.00	0.500		1346m	North
GW110 206	10BL600 363, 10WA11 4143	Spear	Private	Domestic	Domestic		18/07/2006	5.80	5.80	Good	2.13	1.000		1349m	North West
GW109 148	10BL601 885, 10WA11 4420	Spear	Private	Domestic	Domestic		05/08/2008	4.00		Good	2.00	0.500		1351m	South West
GW111 225	10BL604 161, 10WA11 4605	Spear	Private	Domestic	Domestic		02/09/2010	8.00	8.00	good	2.00	0.500		1352m	North
GW111 896	10BL602 153, 10WA11 4454	Spear	Private	Domestic	Domestic		02/12/2007	4.00	4.00	good	2.00	0.500		1353m	South West
GW109 122	10BL602 156, 10WA11 4455	Spear	Private	Domestic	Domestic		25/07/2008	6.00		Good	2.00	0.500		1355m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW023 994	10BL017 512, 10WA11 2906	Spear	Private	Domestic	General Use		01/02/1966	5.40	5.50	Good				1357m	South West
GW100 679	10BL157 776, 10WA11 3177	Spear	Private	Domestic	Domestic		22/10/1996	4.58	4.58	Good	1.67	1.000		1357m	North
GW105 742	10BL162 260, 10WA11 3381	Spear	Private	Domestic	Domestic		25/02/2004	4.00	4.00	Good	2.00	0.500		1364m	North West
GW024 373	10BL018 578, 10WA11 2958	Spear	Private	Domestic	General Use		01/08/1966	5.10	5.20	Good				1368m	North
GW107 576	10BL164 148, 10WA11 3738	Spear	Private	Domestic	Domestic		04/11/2004	8.54	8.54	Good	2.45	1.000		1375m	North
GW110 877	10BL603 575, 10WA11 4590	Spear	Private	Domestic	Domestic		12/03/2010	6.00	6.00	Good	2.00	0.500		1375m	South West
GW109 095	10BL162 272, 10WA11 3388	Spear	Private	Domestic	Domestic		22/07/2008	7.00		Good	5.00	0.500		1381m	North
GW108 650	10BL600 828, 10WA11 4232	Spear	Private	Domestic	Domestic		09/01/2007	4.00	4.00	Good	2.00	0.500		1398m	North West
GW025 539	10BL016 547, 10WA11 2822	Spear	Private	Domestic, General Use	General Use		01/12/1965	4.50	4.60	Good				1402m	North
GW106 485	10BL163 765, 10WA11 3673	Spear	Private	Domestic	Domestic		03/11/2004	4.00	4.00	Good	2.00	0.500		1402m	South West
GW109 136	10BL602 164, 10WA10 9231	Spear	Private	Domestic	Domestic		31/07/2008	4.00		Good	2.00	0.500		1402m	South West
GW023 427	10BL017 149, 10WA11 2867	Spear	Private	Domestic	General Use		01/02/1966	5.40	5.50					1403m	North
GW107 532	10BL163 387, 10WA11 3572	Spear	Private	Domestic	Domestic		18/10/2005	5.50	5.50					1403m	North West
GW100 564	10BL158 043, 10WA11 3195	Spear	Private	Domestic	Domestic		09/05/1997	10.00	10.00					1411m	North
GW106 400	10BL163 462, 10WA11 3585	Spear	Private	Domestic	Domestic		23/07/2004	4.00	4.00		2.00	0.500		1411m	South West
GW110 727	10BL601 279, 10WA11 4313	Spear	Private	Domestic	Domestic		20/04/2007	6.00	6.00	Good	2.00	0.500		1412m	North
GW105 569	10BL162 164, 10WA11 3359	Bore		Domestic	Domestic		06/11/2003	4.00	4.50	Good	1.50	0.500		1413m	South West
GW108 321	10BL164 479, 10WA11 3800	Spear	Private	Domestic	Domestic		06/02/2006	5.60	5.60					1416m	North
GW108 301	10BL600 651, 10WA11 4189	Spear	Private	Domestic	Domestic		14/11/2006	6.00	6.00		2.00	0.500		1424m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 595	10BL165 646, 10WA11 4009	Spear	Private	Domestic	Domestic		29/10/2005	5.49	5.49	Good	2.75	1.000		1431m	North
GW105 592	10BL162 330, 10WA11 3404	Spear	Private	Domestic	Domestic		20/11/2003	6.00	6.00	Good	2.00	0.500		1434m	South West
GW106 084	10BL162 816, 10WA11 3490	Spear	Private	Domestic	Domestic		19/03/2004	6.00	6.00	Good	2.00	0.500		1435m	North
GW107 314	10BL165 075, 10WA11 3917	Spear	Private	Domestic	Domestic		26/06/2005	8.23	8.24	Good	4.88	1.000		1440m	North
GW024 060	10BL017 417, 10WA10 8127	Spear	Private	Domestic, Stock	General Use		01/01/1966	3.60	3.70	Good				1442m	South West
GW111 245	10BL600 196, 10WA11 4122	Bore	Private	Domestic	Domestic		10/11/2006	4.00	4.00	good	2.00	0.500		1448m	South West
GW107 422	10BL165 058, 10WA11 3909	Spear	Private	Domestic	Domestic		21/10/2005	4.00	4.00		2.00	0.500		1455m	South West
GW111 295	10BL601 463, 10WA11 4358	Spear	Private	Domestic	Domestic		01/01/2007	9.00	9.00		4.00	0.500		1457m	North
GW106 881	10BL164 470, 10WA11 3799	Spear	Private	Domestic	Domestic		26/11/2004	6.00	6.00	Good	2.00	0.500		1462m	North West
GW110 302	10BL602 998, 10WA11 4564	Spear	Private	Domestic	Domestic		05/06/2009	5.49	5.49	Good	3.50	1.000		1463m	South West
GW110 493	10BL600 195, 10WA11 4121	Bore	Private	Domestic	Domestic		06/11/2006	4.00	4.00	Good	2.00	0.500		1463m	South West
GW107 690	10BL165 774, 10WA11 4038	Spear	Private	Domestic	Domestic		17/11/2005	4.00	4.00	Good	1.50	0.500		1467m	South West
GW107 682	10BL165 544, 10WA11 3988	Spear	Private	Domestic	Domestic		05/10/2005	4.00	4.00		2.00	0.500		1470m	North West
GW106 846	10BL164 458, 10WA11 3795	Spear	Private	Domestic	Domestic		14/12/2004	7.93	7.93	Good	1.83	1.000		1479m	North
GW108 747	10BL601 473, 10WA11 4359	Spear	Private	Domestic	Domestic		17/04/2007	4.00	4.00	Good	2.00	0.500		1482m	South West
GW106 308	10BL163 674, 10WA11 3648	Spear	Private	Domestic	Domestic		16/08/2004	8.54	8.54		2.13	1.000		1485m	South West
GW108 015	10BL162 247, 10WA11 3378	Spear	Private	Domestic	Domestic		03/04/2006	5.00	5.00		3.00	0.500		1485m	South West
GW023 134	10BL016 772, 10WA11 2843	Spear	Private	Domestic	General Use		01/12/1965	5.30	5.30	Good				1493m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW101 056	10BL157 359, 10BL160 595, 10WA11 4663	Spear	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		20/07/1995	6.00	6.00		4.00	5.000		1493m	North
GW109 775	10BL165 842, 10WA10 9026	Spear	Private	Domestic	Domestic		01/01/1990	5.00						1494m	North West
GW106 101	10BL162 480, 10WA10 8622	Spear	Private	Domestic	Domestic		22/03/2004	5.00	5.00	Good	2.00	0.500		1499m	South West
GW108 716	10BL601 597, 10WA10 9192	Spear	Private	Domestic	Domestic		10/04/2007	5.00	5.00					1501m	North West
GW023 613	10BL017 317, 10WA11 2891	Spear	Private	Domestic	General Use		01/03/1966	6.40	6.40					1504m	North
GW110 418	10BL602 956, 10WA11 4562	Spear	Private	Domestic	Domestic		04/03/2009	6.00	6.00	Good	4.00	0.500		1512m	North
GW075 059		Bore	NSW Office of Water		Monitoring Bore	BOTANY BORE AT SCARBOR OUGH PARK	28/05/2001	17.50	17.50				13.28	1513m	North
GW106 939	10BL165 002, 10WA11 3904	Bore	Private	Domestic	Domestic		01/07/2002	3.00	3.00		1.50			1514m	South West
GW107 661	10BL165 787, 10WA11 4039	Spear	Private	Domestic	Domestic		16/11/2005	7.00	7.00	Good	5.00	0.500		1516m	North
GW107 279	10BL162 332, 10WA10 8600	Spear	Private	Domestic	Domestic		30/11/2004	5.00	5.00	Good	3.00	0.500		1518m	South West
GW105 367	10BL162 005, 10WA11 3345	Bore		Domestic	Domestic		01/01/1990	5.00						1521m	South West
GW106 431	10BL163 472, 10WA11 3587	Spear	Private	Domestic	Domestic		24/08/2004	7.63	7.63		4.58	1.000		1522m	North
GW107 506	10BL165 440, 10WA11 3978	Spear	Private	Domestic	Domestic		29/09/2005	4.00	4.00	Good	2.00	0.500		1523m	North West
GW107 078	10BL165 050, 10WA10 8945	Spear	Private	Domestic	Domestic		19/04/2005	4.00	4.00	Good	2.00	0.500		1525m	South West
GW107 735	10BL165 892, 10WA11 4055	Spear	Private	Domestic	Domestic		09/01/2006	7.00	7.00	Good	5.00	0.500		1526m	North
GW109 114	10BL602 304, 10WA11 4483	Spear	Private	Domestic	Domestic		25/07/2008	7.00		Good	2.00	0.500		1539m	South West
GW107 775	10BL165 999, 10WA11 4077	Spear	Private	Domestic	Domestic		28/01/2006	6.71	6.71	Good	3.05	1.000		1541m	North
GW107 889	10BL600 004, 10WA11 4079	Spear	Private	Domestic	Domestic		03/02/2006	6.00	6.00		4.00	0.500		1543m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW111 899	10BL602 081, 10WA11 4436	Spear	Private	Domestic	Domestic		01/01/2007	6.00	6.00		4.00	0.580		1549m	North
GW114 507	10WA11 8852	Spear	Private	Domestic	Domestic		28/02/2014	6.00	6.00		2.00	0.500		1551m	South West
GW108 715	10BL601 603, 10WA11 4386	Spear	Private	Domestic	Domestic		30/04/2007	7.93	7.93	Good	61.2 1	1.000		1558m	North
GW111 414	10BL601 570, 10WA11 4377	Spear	Private	Domestic	Domestic		30/04/2007	6.00	6.00					1565m	North West
GW107 847	10BL165 944, 10WA11 4064	Spear	Private	Domestic	Domestic		30/01/2006	4.00	4.00	Good	2.00	0.500		1568m	South West
GW111 285	10BL601 350, 10WA11 4325	Spear	Private	Domestic	Domestic		01/01/2007	9.00	9.00		5.00	0.500		1571m	North West
GW107 086	10BL165 066, 10WA11 3915	Bore		Domestic	Domestic		01/01/1983	4.50			2.00	0.500		1579m	South West
GW106 984	10BL164 221, 10WA11 3758	Spear	Private	Domestic	Domestic		06/04/2005	6.00	6.00					1583m	North
GW106 189	10BL163 793, 10WA11 3684	Spear	Private	Domestic	Domestic		26/03/2004	5.00	5.00					1584m	South West
GW072 299		Spear	Private		Domestic		05/12/1994	8.40	8.40	Good				1596m	North
GW107 184	10BL165 139, 10WA11 3925	Spear	Private	Domestic	Domestic		08/07/2005	5.00	5.00					1598m	North
GW111 906	10BL602 178, 10WA11 4459	Spear	Private	Domestic	Domestic		06/12/2007	6.00	6.00		2.00			1602m	North West
GW106 964	10BL164 618, 10WA11 3820	Bore		Domestic			05/04/2006							1606m	South West
GW107 747	10BL165 791, 10WA11 4040	Spear	Private	Domestic	Domestic		13/05/2001	6.00	6.00					1610m	North West
GW108 084	10BL165 725, 10WA11 4033	Spear	Private	Domestic	Domestic		13/05/2006	6.00	6.00					1614m	North West
GW109 152	10BL600 145	Bore	Private	Test Bore	Test Bore		05/08/2008	204.00	204.00	7.03	4.00	2.000		1614m	North West
GW101 329	10BL158 407, 10WA11 3229	Spear	Private	Domestic	Domestic		04/02/1998	4.52	4.57	Good	1.52	1.000		1616m	North West
GW106 416	10BL162 659, 10WA11 3467	Spear	Private	Domestic	Domestic		13/09/2004	5.00	5.00		2.00	0.500		1621m	South West
GW107 023	10BL164 917, 10WA11 3889	Spear	Private	Domestic	Domestic		05/04/2005	6.00	6.00	Good	2.00	0.500		1636m	South West
GW111 140	10BL165 135, 10WA11 3923	Bore	Private	Domestic	Domestic		31/07/2005	7.00	7.00					1643m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW109 267	10BL164 768, 10WA11 3856	Bore	Private	Domestic	Domestic		26/08/2008	8.00			2.00	2.500		1644m	North
GW108 743	10BL601 454, 10WA11 4355	Spear	Private	Domestic	Domestic		28/03/2007	7.32	7.32	Good	3.66	1.000		1648m	North
GW106 301	10BL162 533, 10WA11 3441	Spear	Private	Domestic	Domestic		26/07/2004	4.27	4.27			1.000		1650m	South West
GW101 224	10BL158 320, 10WA11 3221	Spear	Private	Domestic	Domestic		06/12/1997	7.62	7.62	Good	4.27	1.000		1655m	North
GW106 481	10BL164 190, 10WA11 3751	Spear	Private	Domestic	Domestic		15/10/2004	4.00	4.00		2.00	0.500		1655m	South West
GW107 185	10BL163 572, 10WA11 3614	Spear		Domestic	Domestic		09/08/2005	7.00	7.00					1655m	South
GW106 270	10BL163 740, 10WA11 3668	Spear	Private	Domestic	Domestic		05/09/2004	5.00	5.00					1658m	North West
GW023 262	10BL017 087, 10WA11 2865	Spear	Private	Conservation Of Water, Domestic	General Use		01/11/1965	6.70	6.70					1661m	South West
GW109 102	10BL162 221, 10WA11 3367	Spear	Private	Domestic	Domestic		23/07/2008	6.00		Good	2.00	0.500		1663m	North
GW109 130	10BL602 214, 10WA11 4464	Spear	Private	Domestic	Domestic		28/07/2008	6.00		Good	2.00	0.500		1663m	South West
GW112 387	10WA11 8636	Spear	Private	Domestic	Domestic		14/03/2013	7.50	7.50		1.50	0.500		1664m	South West
GW115 037	10BL604 285, 10WA10 9311			Domestic	Domestic		01/01/2010	7.00	7.00		4.00			1664m	South West
GW109 925	10BL602 778, 10WA11 4537	Bore	Private	Domestic	Domestic		22/01/2009	6.00	6.00	Good	2.00	0.500		1672m	South West
GW072 456		Bore	Private		Domestic		07/11/1994	6.00	6.00					1674m	South West
GW107 216	10BL164 924, 10WA11 3892	Spear	Private	Domestic	Domestic		01/06/2005	6.00	6.00		3.00	0.500		1676m	North
GW111 925	10WA11 7313	Bore	Private	Domestic	Domestic		21/12/2011	8.00	8.00		2.00	0.500		1682m	North
GW109 935	10BL602 760, 10WA11 4533	Spear	Private	Domestic	Domestic		27/11/2008	7.63	7.63	Good	3.66	1.000		1684m	North
GW106 175	10BL163 406, 10WA11 3577	Spear	Private	Domestic	Domestic		18/06/2004	6.00	6.00		3.00	0.500		1685m	North
GW107 622	10BL165 720, 10WA11 4031	Spear	Private	Domestic	Domestic		17/11/2005	7.01	7.02	Good	3.96	1.000		1685m	North
GW108 735	10BL163 130, 10WA11 3529	Spear	Private	Domestic	Domestic		01/01/1970	4.00			3.00			1688m	South

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 388	10BL163 522, 10WA11 3599	Spear	Private	Domestic	Domestic		22/09/2004	4.00	4.00			0.500		1689m	North West
GW106 850	10BL164 423, 10WA11 3791	Spear	Private	Domestic	Domestic		01/12/2004	5.00	5.00	Good	2.00	0.500		1689m	South West
GW110 202	10BL600 043, 10WA11 4087	Spear	Private	Domestic	Domestic		10/03/2006	6.00	6.00					1689m	North
GW106 860	10BL164 689, 10WA11 3831	Spear	Private	Domestic	Domestic		22/03/2005	6.00	6.00	Good	2.00	0.500		1693m	North
GW107 450	10BL163 550, 10WA11 3608	Spear	Private	Domestic	Domestic		26/08/2005	4.00	4.00	Good	2.00	0.500		1695m	North
GW108 633	10BL163 478, 10WA11 3590	Spear	Private	Domestic	Domestic		06/11/2004	7.32	7.32	Good	4.27	1.000		1695m	North
GW025 816	10BL017 189, 10WA11 2871	Spear	Private	Domestic	General Use		01/12/1965	6.00	6.10	Good				1698m	North
GW106 883	10BL164 464, 10WA11 3796	Spear	Private	Domestic	Domestic		01/12/2004	6.00	6.00	Good	3.00	3.000		1702m	North
GW107 849	10BL600 085, 10WA11 4096	Spear	Private	Domestic	Domestic		02/03/2006	7.00	7.00	Good	2.00	0.500		1702m	North
GW109 027	10BL602 062, 10WA10 9218	Piezo meter	Private	Domestic	Domestic		11/07/2008	4.00		Good	2.00	0.500		1702m	North West
GW106 894	10BL164 369, 10WA11 3785	Spear	Private	Domestic	Domestic		24/11/2004	4.00	4.00	Good	2.00	0.500		1712m	South West
GW107 859	10BL600 081, 10WA11 4094	Spear	Private	Domestic	Domestic		02/03/2006	7.00	7.00		2.00	0.500		1712m	North
GW109 945	10BL601 825, 10WA11 4417	Spear	Private	Domestic	Domestic		22/12/2008	7.50	7.50	Good	4.00	0.500		1715m	North
GW025 557	10BL016 400, 10WA11 2811	Spear	Private	Domestic	Domestic		01/11/1965	3.30	3.40	Good	1.60	0.450		1718m	South West
GW107 045	10BL162 158, 10WA11 3356	Spear	Private	Domestic	Domestic		31/03/2005	6.00	6.00	Good	2.00	0.500		1725m	North
GW106 275	10BL163 551, 10WA11 3609	Spear	Private	Domestic	Domestic		03/09/2004	5.00	5.00					1732m	South West
GW109 063	10BL602 167, 10WA11 4458	Spear	Private	Domestic	Domestic		16/07/2008	4.00		Good	2.00	0.500		1733m	South West
GW108 288	10BL600 539, 10WA11 4162	Spear	Private	Domestic	Domestic		30/10/2006	4.00	4.00		2.00	0.500		1745m	North West
GW108 007	10BL165 061, 10WA10 8948	Spear		Domestic	Domestic		01/01/2005	5.00	5.00					1749m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 275	10BL165 285, 10WA11 3947	Spear	Private	Domestic	Domestic		07/07/2005	6.00	6.00		2.00	0.500		1750m	South West
GW107 553	10BL164 210, 10WA11 3755	Spear	Private	Domestic	Domestic		21/10/2005	4.00	4.00	Good	2.00	0.500		1751m	South West
GW106 861	10BL164 669, 10WA11 3828	Spear	Private	Domestic	Domestic		15/01/2005	4.00	4.00	Good	2.00	0.500		1752m	South West
GW106 379	10BL163 860, 10WA11 3694	Spear	Private	Domestic	Domestic		18/08/2004	6.00	6.00	Good	4.00	0.500		1753m	North
GW110 710	10BL603 669, 10WA11 4595	Spear	Private	Domestic	Domestic		13/02/2010	6.00	6.00	Good	1.52	1.000		1753m	South West
GW025 546	10BL016 473, 10WA10 8121	Bore	Private	Domestic	General Use		01/11/1965	3.30						1754m	South West
GW023 495	10BL017 314, 10WA11 2889	Spear	Private	Domestic	General Use		01/02/1966	5.40	5.50	Good				1755m	North West
GW111 797	10BL165 700	Spear	Private	Domestic	Domestic		24/10/2006	7.32	7.32	good		1.000		1756m	South West
GW106 882	10BL164 469, 10WA11 3798	Spear	Private	Domestic	Domestic		28/12/2004	5.00	5.00					1757m	North West
GW108 097	10BL164 928, 10WA11 3894	Spear	Private	Domestic	Domestic		03/05/2005	5.80	5.80		1.52	1.000		1758m	South West
GW105 976	10BL162 777, 10WA11 3483	Spear	Private	Domestic	Domestic		24/02/2004	8.23	8.24			1.000		1759m	South West
GW108 777	10BL601 436, 10WA11 4347	Spear	Private	Domestic	Domestic		10/04/2007	6.00	6.00	Good	2.00	0.500		1759m	North West
GW108 655	10BL600 067, 10WA11 4091	Spear	Private	Domestic	Domestic		12/02/2007	7.00	7.00	Good	2.00	0.500		1760m	South West
GW107 879	10BL165 961, 10WA11 4068	Spear	Private	Domestic	Domestic		09/03/2006	4.00	4.00		2.00	0.500		1761m	South West
GW108 176	10BL600 453, 10WA11 4148	Spear	Private	Domestic	Domestic		11/08/2006	4.00	4.00		2.00	0.500		1761m	South
GW110 652	10BL600 729, 10WA11 4207	Spear	Private	Domestic	Domestic		23/01/2007	5.49	5.49	Good	5.49	1.000		1761m	North
GW110 865	10BL603 570, 10WA11 4589	Spear	Private	Domestic	Domestic		13/04/2010	4.00	4.00		2.00	0.500		1761m	North West
GW107 887	10BL600 032, 10WA11 4083	Spear	Private	Domestic	Domestic		07/02/2006	6.00	6.00		4.00	0.500		1766m	North
GW107 206	10BL164 741, 10WA11 3850	Spear	Private	Domestic	Domestic		08/07/2005	4.00	4.00		2.00	0.500		1768m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 421	10BL163 477, 10WA11 3589	Bore		Domestic			01/09/2005							1772m	North West
GW106 117	10BL162 859, 10WA11 3500	Spear	Private	Domestic	Domestic		21/06/2004	4.00	4.00	Good	2.00	0.500		1774m	South West
GW106 618	10BL162 392, 10WA11 3421	Spear	Private	Domestic	Domestic		01/01/1985	6.00	6.00					1776m	North
GW107 456	10BL164 735, 10WA11 3847	Spear	Private	Domestic	Domestic		07/10/2005	4.00	4.00	Good	2.00	0.500		1781m	South West
GW108 568	10BL601 206, 10WA11 4301	Spear	Private	Domestic	Domestic		18/03/2007	7.00	7.00					1784m	North
GW107 664	10BL165 819, 10WA11 4046	Spear	Private	Domestic	Domestic		21/11/2005	6.00	6.00	Good	2.00	0.500		1786m	South West
GW105 587	10BL162 206, 10WA11 3365	Spear	Private	Domestic	Domestic		17/11/2003	6.00	6.00	Good	3.00	0.500		1792m	North
GW108 690	10BL601 645, 10WA11 4396	Spear	Private	Domestic	Domestic		09/05/2007	7.00	7.00	Good	2.00	0.500		1793m	South West
GW106 009	10BL162 650, 10WA11 3465	Spear	Private	Domestic	Domestic		09/03/2004	4.00	4.00	Good	2.00	0.500		1794m	South
GW111 229	10BL600 586, 10WA11 4172	Spear	Private	Domestic	Domestic		10/10/2006	6.00	6.00					1794m	North West
GW106 392	10BL163 723, 10WA11 3661	Spear	Private	Domestic	Domestic		10/09/2004	6.00	6.00	Good	1.00	0.500		1795m	South West
GW106 424	10BL163 594, 10WA11 3623	Spear	Private	Domestic	Domestic		22/07/2004	4.00	4.00	Good	2.00	0.500		1800m	South West
GW108 005	10BL165 049, 10WA11 3908	Spear	Private	Domestic	Domestic		24/07/2006	4.00	4.00		2.00	0.500		1804m	South West
GW106 393	10BL163 722, 10WA11 3660	Spear	Private	Domestic	Domestic		23/09/2004	6.00	6.00		1.00	0.500		1807m	South West
GW108 646	10BL601 387, 10WA11 4335	Spear	Private	Domestic	Domestic		01/03/2007	7.00	7.00		2.00	0.500		1814m	South West
GW072 795		Spear	Private		Domestic		21/01/1995	8.40	8.40	Good				1815m	North
GW107 060	10BL164 857, 10WA11 3874	Spear	Private	Domestic	Domestic		06/04/2005	4.00	4.00		2.00	0.500		1821m	South West
GW105 972	10BL162 293, 10WA11 3396	Spear	Private	Domestic	Domestic		25/03/2004	5.00	5.00	Good	3.00	0.500		1827m	South West
GW106 224	10BL163 619, 10WA11 3633	Spear	Private	Domestic	Domestic		13/08/2004	6.00	6.00	Good	4.20	0.500		1828m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 731	10BL164 566, 10WA11 3813	Spear	Private	Domestic	Domestic		10/01/2006	7.00	7.00	Good	5.00	0.500		1829m	North
GW108 689	10BL165 529	Spear	Private	Domestic	Domestic		04/10/2005	4.00	4.00	Good	2.00	0.500		1829m	South West
GW109 023	10BL602 051, 10WA11 4433	Spear	Private	Domestic	Domestic		11/07/2008	7.00		Good	3.00	0.500		1830m	South West
GW108 887	10BL163 346, 10WA11 3563	Spear	Private	Domestic	Domestic		30/05/2008	8.00		Good	6.00	0.500		1835m	North
GW106 907	10BL164 604, 10WA11 3819	Spear	Private	Domestic	Domestic		01/02/2005	4.00	4.00	Good	2.00	0.500		1836m	North
GW107 281	10BL162 225, 10WA11 3368	Spear	Private	Domestic	Domestic		06/07/2005	6.00	6.00		2.00	0.500		1838m	South West
GW106 834	10BL164 739, 10WA11 3848	Spear	Private	Domestic	Domestic		09/02/2005	4.00	4.00	Good	2.00	0.500		1839m	South West
GW107 095	10BL164 491, 10WA11 3802	Spear	Private	Domestic	Domestic		15/12/2005	5.80	5.80		2.75	1.000		1840m	South West
GW107 136	10BL164 583, 10WA11 3815	Bore		Domestic			26/05/2006							1841m	South
GW024 674	10BL018 961, 10WA11 2975	Spear	Private	Domestic	General Use			6.00						1842m	North
GW106 185	10BL163 494, 10WA11 3596	Bore		Domestic			04/07/2005							1843m	North
GW107 493	10BL165 555, 10WA11 3991	Spear	Private	Domestic	Domestic		08/10/2005	7.32	7.32	Good	4.27	1.000		1849m	North
GW025 551	10BL016 962, 10WA11 2854	Spear	Private	Domestic	General Use		01/01/1965	2.50						1851m	North
GW106 112	10BL162 841, 10WA11 3495	Spear	Private	Domestic	Domestic		23/03/2004	4.00	4.00	Good	2.00	0.500		1852m	North
GW109 144	10BL165 878, 10WA11 4053	Spear	Private	Domestic	Domestic		04/08/2008	8.85		Good	2.88	1.000		1856m	North
GW108 028	10BL164 486, 10WA11 3801	Spear	Private	Domestic	Domestic		01/08/2006	6.00	6.00		3.00	0.500		1857m	South
GW107 357	10BL164 198, 10WA11 3753	Spear	Private	Domestic	Domestic		25/08/2005	6.10	6.10	Good	3.50	1.000		1862m	North
GW107 372	10BL164 146, 10WA11 3737	Spear	Private	Domestic	Domestic		23/10/2004	5.80	5.80	Good	1.83	1.000		1864m	North
GW023 354	10BL016 698, 10WA10 8124	Bore	Private	Domestic	General Use		01/11/1965	3.60	3.70	Good				1865m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW106 032	10BL162 781, 10WA11 3484	Spear	Private	Domestic	Domestic		27/02/2004	4.00	4.00	Good	2.00	0.500		1867m	South West
GW107 482	10BL164 126, 10WA11 3732	Spear	Private	Domestic	Domestic		10/10/2005	6.00	6.00	Good	2.00	0.500		1868m	South West
GW109 131	10BL602 269, 10WA11 4477	Spear	Private	Domestic	Domestic		29/07/2008	6.00						1870m	North
GW110 422	10BL602 921, 10WA11 4560	Spear	Private	Domestic	Domestic		28/02/2009	6.00	6.00	Good	4.00	0.500		1876m	North
GW108 649	10BL601 381, 10WA11 4334	Spear	Private	Domestic	Domestic		12/03/2007	6.00	6.00	Good	2.00	0.500		1880m	South West
GW108 927	10BL602 084, 10WA11 4438	Spear	Private	Domestic	Domestic		18/06/2008	5.80		Good	1.83	1.000		1885m	North
GW109 183	10BL163 966, 10WA10 8810	Bore	Private	Domestic	Domestic		08/08/2008	8.00			2.00	1.000		1890m	North West
GW107 169	10BL165 255, 10WA11 3941	Spear	Private	Domestic	Domestic		06/07/2005	6.00	6.00	Good	2.00	0.500		1897m	South West
GW108 035	10BL600 151, 10WA11 4112	Spear	Private	Domestic	Domestic		10/04/2006	4.00	4.00		2.00	0.500		1897m	South
GW107 364	10BL165 166, 10WA11 3930	Spear	Private	Domestic	Domestic		24/08/2005	5.18	5.19	Hard	3.36	1.000		1899m	North
GW109 938	10BL602 758, 10WA11 4531	Bore	Private	Domestic	Domestic		09/12/2008	6.00	6.00	Good	3.00	0.500		1900m	South West
GW110 189	10BL602 322, 10WA11 4487	Spear	Private	Domestic	Domestic		01/04/2008	6.00	6.00					1904m	North
GW107 445	10BL165 464, 10WA11 3982	Spear	Private	Domestic	Domestic		01/01/1999	5.00	5.00					1907m	South
GW111 762	10BL164 772, 10WA10 8923	Spear	Private	Domestic	Domestic		01/05/2005	5.50	5.50		2.00			1908m	North West
GW107 684	10BL164 403, 10WA11 3789	Spear	Private	Domestic	Domestic		28/11/2005	6.00	6.00	Good	4.00	0.500		1914m	North
GW106 847	10BL164 449, 10WA11 3794	Spear	Private	Domestic	Domestic		09/12/2004	7.00	7.00	Good	2.00	0.500		1915m	South West
GW107 373	10BL163 703, 10WA11 3656	Spear	Private	Domestic	Domestic		05/05/2005	6.00	6.00					1915m	North
GW106 807	10BL164 119, 10WA11 3729	Spear	Private	Domestic	Domestic		24/11/2004	4.00	4.00	Good	2.00	0.500		1916m	South
GW106 133	10BL163 271, 10WA11 3551	Spear	Private	Domestic	Domestic		24/06/2004	4.88	4.88		2.13	1.000		1917m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW107 876	10BL164 713, 10WA11 3841	Bore		Domestic	Domestic		01/01/2005	6.00						1924m	North
GW108 570	10BL601 313, 10WA11 4316	Spear	Private	Domestic	Domestic		17/03/2007	7.93	7.93	Good	24.0 0	1.000		1924m	South West
GW108 600	10BL601 401, 10WA11 4339	Spear	Private	Domestic	Domestic		13/03/2007	5.80	5.80	Good	5.80	1.000		1930m	North
GW109 559	10BL165 436, 10WA11 3977	Spear	Private	Domestic	Domestic		27/08/2007	6.00	6.00					1931m	North
GW109 491	10BL164 620, 10WA11 3821	Spear	Private	Domestic	Domestic		05/12/2005	4.00	4.00		2.00	0.500		1932m	South
GW108 694	10BL601 501, 10WA11 4363	Spear	Private	Domestic	Domestic		18/04/2007	7.00	7.00	Good	2.00	0.500		1936m	South West
GW107 484	10BL164 122, 10WA11 3731	Spear	Private	Domestic	Domestic		01/01/2004	15.00	4.57			0.004		1941m	North
GW105 591	10BL162 291, 10WA11 3395	Bore	Private	Domestic	Domestic		15/11/2003	6.00	6.00	Good		0.500		1942m	North
GW106 780	10BL164 312, 10WA11 3772	Spear	Private	Domestic	Domestic		06/12/2004	7.32	7.32		3.96	1.000		1942m	North
GW107 192	10BL164 531, 10WA11 3807	Spear	Private	Domestic	Domestic		11/07/2005	7.32	7.32		4.27	1.000		1946m	North
GW107 799	10BL600 030, 10WA11 4082	Spear	Private	Domestic	Domestic		05/11/2006	5.50	5.50					1947m	North
GW107 896	10BL600 033, 10WA11 4084	Spear	P.W.D.	Domestic	Domestic		07/02/2006	6.00	6.00		4.00	0.500		1951m	North
GW110 442	10BL602 818, 10WA11 4542	Spear	Private	Domestic	Domestic		28/04/2009	6.00	6.00	Good	4.00	0.500		1951m	North
GW108 496	10BL600 789, 10WA11 4222	Spear	Private	Domestic	Domestic		05/02/2007	6.10	6.10	Good	2.75	1.000		1952m	North
GW109 103	10BL162 287, 10WA11 3393	Spear	Private	Domestic	Domestic		23/07/2008	6.00		Good	3.00	0.500		1953m	North
GW107 606	10BL165 683, 10WA11 4018	Spear	Private	Domestic	Domestic		30/10/2005	7.00	7.00					1954m	North
GW106 755	10BL164 343, 10WA11 3776	Spear	Private	Domestic	Domestic		10/01/2005	4.00	4.00	Good	2.00	0.500		1955m	South
GW107 114	10BL162 865, 10WA11 3501	Spear	Private	Domestic	Domestic		01/02/2004	5.85	5.85	Good	3.10	1.000		1956m	North
GW111 497	10BL602 544, 10WA11 4522	Spear	Private	Domestic	Domestic		25/05/2006	6.00	6.00					1956m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW110 167	10BL600 252, 10WA11 4129	Spear	Private	Domestic	Domestic		20/05/2009	6.00	6.00	Good	4.00	0.500		1957m	North
GW110 227	10BL600 344, 10WA11 4137	Spear	Private	Domestic	Domestic		02/09/2006	7.00	7.00	Good	2.00	0.500		1968m	South West
GW111 561	10BL600 835, 10WA11 4235	Spear	Private	Domestic	Domestic		21/01/2007	6.00	6.00					1970m	North
GW023 485	10BL017 639, 10WA11 2920	Spear	Private	Domestic	General Use		01/01/1966	6.70	6.70					1975m	North
GW108 109	10BL163 673, 10WA11 3647	Spear	Private	Domestic	Domestic		07/09/2004	4.00	4.00		2.00	0.500		1979m	South West
GW108 915	10BL601 726, 10WA11 4408	Spear	Private	Domestic	Domestic		12/06/2008	6.00		Good	3.00	0.500		1979m	North
GW107 374	10BL163 614, 10WA11 3631	Spear	Private	Domestic	Domestic		01/10/2005	10.00	10.00					1980m	North
GW108 559	10BL601 258, 10WA11 4309	Spear	Private	Domestic	Domestic		13/02/2007	7.00	7.00	Good	5.00	0.500		1982m	North
GW107 803	10BL165 799, 10WA11 4045	Spear	Private	Domestic	Domestic		28/11/2005	6.10	6.10	Good	3.50	1.000		1983m	North
GW109 105	10BL602 338, 10WA11 4490	Spear	Private	Domestic	Domestic		23/07/2008	4.00		Good	2.00	0.500		1983m	South West
GW110 219	10BL600 362, 10WA11 4142	Spear	Private	Domestic	Domestic		07/09/2007	6.00	6.00					1983m	North
GW111 954	10WA11 7979	Spear	Private	Domestic	Domestic		10/11/2012	7.00	7.00		2.00	0.500		1991m	South West
GW110 271	10BL600 360, 10WA11 4140	Bore	Private	Domestic	Domestic		30/08/2007	6.00	6.00					1992m	North
GW112 523	10WA11 8033	Spear	Private	Domestic	Domestic		13/05/2013	6.00	6.00		2.00	0.500		1994m	North
GW107 299	10BL165 358, 10WA11 3967	Spear	Private	Domestic	Domestic		21/08/2005	5.60	5.60					1995m	North
GW016 970	10BL008 489, 10WA11 2793	Spear	Private	Domestic	General Use			7.30	7.30					1996m	South West

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

277 The Grand Parade, Ramsgate, NSW 2217

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW017349	0.00m-7.62m Sand	0m	On-site
GW106324	0.00m-0.30m topsoil 0.30m-3.00m sand, prown 3.00m-5.00m sand, grey	5m	South West
GW028205	0.00m-6.09m Sand White Water Supply	23m	North West
GW111186	0.00m-0.60m TOPSOIL, FINE SAND, SANDSTONE CHUNKS 0.60m-6.00m SAND, FINE, L/BROWN, DAMP, LOOSE, GREY, WET	29m	East
GW106419	0.00m-0.30m topsoil 0.30m-3.00m sand, prown 3.00m-4.00m sand, grey	39m	South West
GW106113	0.00m-5.18m sand, unconsolidated	44m	South West
GW111185	0.00m-0.10m ASPHALT 0.10m-0.50m CLAY, FINE, SANDY, M/GRAVEL, DARK BROWN 0.50m-6.00m SAND, FINE LOOSE, WELL SORTED, HOMOGENOUS, DAMP	48m	North East
GW017480	0.00m-7.62m Sand	52m	South
GW111187	0.00m-0.50m SAND FINE BROWN,DRY LOOSE,ORGANIC MATTER PRESENT 0.50m-2.00m SAND BUT NO ORGANIC MATTER 2.00m-3.00m SAND,FINE,L/BROWN,LOOSE,HOMOGENOUS 3.00m-6.00m SAND, WET	52m	North Eas
GW111184	0.00m-0.50m TOPSOIL,FINE SAND,DARK BROWN,SOME ORGANIC MATTER 0.50m-3.50m SAND,FINEM,VERY LOOSE,DAMP 3.50m-4.00m SAND,WET,HYDROCARBON ODOUR NOTICE 4.00m-6.00m SAND,WET,GREY AND HYDROCARBON ODOUR	78m	North East
GW028207	0.00m-18.28m Sand White Water Supply	79m	North East
GW106238	0.00m-0.30m topsoil 0.30m-3.30m sand, yellow 3.30m-5.00m sand, yrey	85m	South
GW107637	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	89m	North
GW111188	0.00m-0.10m CONCRETE 0.10m-0.60m SAND,FINE,LIGHT BROWN,MOIST,HOMOGENOUS,LOOSE 0.60m-3.50m SAND AS ABOVE BUT VERY LIGHT YELLOW 3.50m-6.00m SAND VERY LIYELLOW AND WET	93m	North
GW108560	0.00m-0.30m Ttopsoil 0.30m-2.50m Sand, yellow 2.50m-4.00m Sand, grey	108m	South West
GW111183	0.00m-0.50m SAND,FINE,TAN,DRY,ORGANIC MATTER PRESENT 0.50m-3.50m SAND FINE,L/BROWN,DAMP,VERY LOOSE,WET 3.50m-6.00m SAND FINE,L/BROWN,DAMP,VERY LOOSE,WET	111m	North East
GW023601	0.00m-0.91m Sand Grey 0.91m-4.87m Sand White Water Supply	113m	South West
GW108174	0.00m-0.30m topsoil 0.30m-2.30m sand, yellow 2.30m-4.00m sand, yrey	125m	North
GW108299	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-4.00m sand, grey	131m	West
GW023603	0.00m-4.57m Sand Water Supply	136m	North
GW017476	0.00m-7.62m Sand	178m	South
GW071885	0.00m-4.00m sand, peaty grey 4.00m-6.00m sand, clean, grey	195m	South
GW108812	0.00m-0.30m topsoil 0.30m-4.00m sand, yellow	200m	South West

Groundwater No	Drillers Log	Distance	Direction
GW108591	0.00m-6.10m Sand, unconsolidated	246m	South
GW101761	0.00m-5.50m Sand	247m	North West
GW107341	0.00m-0.30m topsoil 0.30m-4.20m sand, yellow 4.20m-6.00m sand, grey and shells	253m	North
GW031679	0.00m-6.40m Sand Water Supply	275m	South West
GW108718	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	286m	North
GW105767	0.00m-0.30m topsoil 0.30m-3.30m sand, light brown with some shells	318m	North
GW106325	0.00m-0.30m topsoil 0.30m-4.00m sand, white 4.00m-5.00m sand, yellow	323m	North
GW108701	0.00m-6.10m sand	327m	North
GW102629	1.00m-8.00m SAND	331m	South
GW110657	0.00m-5.49m UNCONSOLIDATED ALL SANDS	360m	South
GW108598	0.00m-5.18m sand	364m	South West
GW107724	0.00m-0.30m topsoil 0.30m-2.50m sand, grellow 2.50m-4.00m sand, grey	371m	South
GW111282	0.00m-2.00m SAND (CG) 2.00m-5.00m SAND / AQUIFER (CG)	371m	South West
GW106115	0.00m-4.00m sand	381m	West
GW108627	0.00m-0.30m lopsoil 0.30m-0.35m sand, yellow 0.35m-6.00m sand, grey	385m	South
GW108490	0.00m-0.30m TOP SOIL 0.30m-1.20m BROWN SAND 1.20m-2.70m BROWN SILTY SAND 2.70m-4.70m GREY SANDY CLAY 4.70m-12.50m BROWN SILTY SAND	388m	North West
GW106849	0.00m-4.27m sand, unconsolidated	398m	West
GW024174	0.00m-4.26m Sand White Water Supply	412m	North
GW107149	0.00m-6.00m sand	413m	West
GW107077	0.00m-0.30m topsoil 0.30m-2.20m sand, yellow 2.20m-4.00m sand, grey	415m	South West
GW111766	0.00m-2.00m SAND GREY 2.00m-4.00m SAND YELLOW	425m	South West
GW111376	0.00m-7.00m ALL SAND	444m	North
GW109643	0.00m-6.71m UNCONSOLIDATED ALL SANDS	455m	North
GW107183	0.00m-5.50m sand	462m	South West
GW106331	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-5.00m sand, grey	463m	West
GW109642	0.00m-6.71m UNCONSOILIDATED ALL SANDS	465m	North
GW109939	0.00m-6.10m UNCONSOLIDATED ALL SANDS.	469m	North
GW075063	0.00m-0.50m Fill; dark brown clay and brick fill 0.50m-1.50m Clayey sand; grey and moist 1.50m-3.00m Sandy clay; grey soft to hard weathered sandstone 3.00m-3.50m Bedrock; sandstone	471m	North West
GW031678	0.00m-6.40m Sand Water Supply	478m	North
GW108292	0.00m-0.30m topsoil 0.30m-3.40m sand, yellow 3.40m-4.00m sand, grey	483m	South

Groundwater No	Drillers Log	Distance	Direction
GW106732	0.00m-6.00m sand	484m	South West
GW114835	0.00m-3.00m SAND YELLOW 3.00m-6.00m SAND GREY	488m	South West
GW109641	0.00m-6.71m UNCONSOLIDATED ALL SANDS	490m	North
GW109947	0.00m-0.30m TOPSOIL 0.30m-5.40m YELLOW SAND 5.40m-7.00m WHITE SAND WITH SHELLS	508m	North
GW108644	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	510m	South West
GW106152	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-6.00m sand, grey	514m	North
GW108658	0.00m-0.30m topsoil 0.30m-2.20m sand, yellow 2.20m-4.00m sand, grey	514m	South West
GW106482	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	518m	West
GW106399	0.00m-0.30m topsoil 0.30m-3.00m sand, white 3.00m-6.00m sand, grey	519m	North
GW108531	0.00m-0.30m Ttopsoil 0.30m-3.00m Sand, yellow 3.00m-4.00m Sand, grey	519m	South West
GW108173	0.00m-0.30m TOPSOIL 0.30m-3.50m sand, yellow 3.50m-5.00m sand, grey	520m	North
GW106262	0.00m-0.30m topsoil 0.30m-6.00m sand, yellow	521m	North
GW108763	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-6.00m sand, white	524m	North
GW106234	0.00m-5.00m sand	525m	South West
GW106222	0.00m-0.30m topsoil 0.30m-3.00m sand, brown 3.00m-4.00m sand, grey	542m	South West
GW106840	0.00m-0.30m Topsoil 0.30m-2.50m Sand, yellow 2.50m-4.00m Sand, grey	545m	South West
GW105753	0.00m-0.30m topsoil 0.30m-4.00m sand, white	546m	South
GW106544	0.00m-0.30m topsoil 0.30m-3.20m sand, yellow 3.20m-4.00m sand, grey	546m	South West
GW105119	0.00m-6.10m UNCONSOLIDATE ALL SANDS	553m	South West
GW106809	0.00m-6.00m sand	561m	South West
GW108554	0.00m-0.30m Topsoil 0.30m-3.00m Sand, yellow 3.00m-4.00m Sand, grey	562m	West
GW105772	0.00m-0.20m topsoil 0.20m-3.20m sand, light brown 3.20m-3.80m sand, grey 3.80m-4.00m sithysand, brown with some brown clay	566m	West
GW108810	0.00m-0.30m topsoil 0.30m-4.50m sand, yelow 4.50m-6.00m sand, grey	566m	North
GW105616	0.00m-0.40m topsoil 0.40m 2.50m sand. brown 2.50m-4.50m sand, white	567m	South West
GW106920	0.00m-6.10m Sand, unconsolidated	575m	North
GW024591	0.00m-1.82m Sand Grey 1.82m-4.87m Sand White Water Supply	579m	South West
GW105249	0.00m-0.30m TOPSOIL 0.30m-3.30m SAND LT BROWN 3.30m-4.00m SAND GREY	581m	West

Groundwater No	Drillers Log	Distance	Direction
GW105250	0.00m-0.20m TOPSOIL 0.20m-3.20m LT BROWN SAND 3.20m-3.80m GREY SAND 3.80m-4.00m SAND WITH BROWN CLAY	592m	West
GW111475	0.00m-0.50m TOPSOIL 0.50m-4.00m SAND YELLOW	599m	South West
GW108697	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-4.00m sand, grey	604m	South West
GW108745	0.00m-7.01m sand	604m	North
GW106564	0.00m-3.50m sand 3.50m-3.50m day	606m	West
GW107667	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-4.50m sand, partly brown 4.50m-5.20m sand, grey 5.20m-7.00m sand, brown	608m	South West
GW023984	0.00m-0.91m Sand Grey 0.91m-5.18m Sand White 5.18m-6.70m Sand Fossils:shell Fragments Water Supply	618m	North
GW107878	0.00m-0.30m topsoil 0.30m-3.20m sand, yellow 3.20m-4.00m sand, grey	623m	South West
GW101763	0.00m-6.00m Sand	629m	North West
GW106411	0.00m-0.30m topsoil 0.30m-2.00m sand, grey 2.00m-4.00m sand, brown	630m	West
GW028209	0.00m-3.05m Sand White 3.05m-4.57m Driller	632m	South
GW106896	0.00m-0.30m Topsoil 0.30m-4.50m Sand, yellow 4.50m-6.00m Sand, grey, some shells	632m	North
GW107426	0.00m-0.50m tospoil 0.50m-1.00m fill, rocks sand 1.00m-2.50m sand, yellow 2.50m-4.00m sand, grey	635m	South West
GW108268	0.00m-0.30m topsoil 0.30m-4.00m sand, brown	638m	North West
GW102137	0.00m-5.00m Sand	639m	North
GW107428	0.00m-0.30m topsoil 0.30m-2.60m sand, yellow 2.60m-4.00m sand, grey	641m	South West
GW024376	0.00m-0.91m Sand Grey 0.91m-4.87m Sand White Water Supply	643m	South West
GW107375	0.00m-0.30m topsoil 0.30m-1.50m sand, yellow 1.50m-4.00m sand, grey	645m	South West
GW106384	0.00m-6.10m sand	654m	North West
GW023508	0.00m-1.82m Sand 1.82m-5.48m Sand Shell Water Supply	655m	South West
GW106848	0.00m-0.30m topsoil 0.30m-2.20m sand, yellow 2.20m-3.00m sand, prown 3.00m-4.00m sand, grey	662m	South West
GW106434	0.00m-0.30m topsoil 0.30m-1.50m sand, brown 1.50m-4.00m sand, yellow 4.00m-6.00m sand, yellow with shells	674m	North
GW103228	0.00m-6.00m All sand	675m	North
GW108493	0.00m-0.30m Topsoil 0.30m-0.35m Sand, yellow 0.35m-6.00m Sand, grey	680m	North
GW108522	0.00m-0.30m Topsol 0.30m-3.00m Sand, yellow	684m	West
GW106703	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	685m	South

Groundwater No	Drillers Log	Distance	Direction
GW023986	0.00m-0.91m Loam Sandy 0.91m-2.43m Sand Water Supply	689m	South West
GW106578	0.00m-0.30m topsoil 0.30m-2.20m sand, yellow 2.20m-4.00m sand, grey	689m	South West
GW023966	0.00m-6.09m Sand 6.09m-7.01m Shale 7.01m-7.31m Aquifer Water Supply	690m	South
GW114902	0.00m-3.00m SAND YELLOW 3.00m-5.00m SAND GREY	690m	South West
GW107479	0.00m-0.30m topsoil 0.30m-3.50m sand, white 3.50m-6.00m sand, grey	692m	South
GW106804	0.00m-0.30m topsoil 0.30m-2.30m sand, yellow 2.30m-4.00m sand, grey	696m	South
GW106805	0.00m-0.30m topsoil 0.30m 2.30m sand, yellow 2.30m 4.00m sand, grey	696m	South
GW105773	0.00m-0.30m topsoil 0.30m-4.00m sand, yellow	701m	South
GW024375	0.00m-1.82m Soil Black 1.82m-3.65m Mud Black Water Supply	706m	North West
GW107065	0.00m-0.30m toposil 0.30m s3.00m sand, yellow 3.00m s.0.0m sand, brown	706m	South
GW101154	0.00m-4.88m UNCONSOLIDATED, ALL SAND WITH SMALL SEA SHELLS.	708m	South West
GW107599	0.00m-6.00m sand	721m	North West
GW025681	0.00m-6.09m Sand Water Supply	722m	South
GW105310	0.00m-0.30m TOPSOIL 0.30m-3.00m WHITE SAND 3.00m-4.00m BROWN SAND	723m	North
GW104637	0.00m-7.32m UNCONSOLIDATED ALL SANDS	724m	North
GW111562	0.00m-6.00m ALL SAND	725m	South West
GW111467	0.00m-2.00m SAND YELLOW 2.00m-5.00m SAND DARK BROWN 5.00m-6.00m SAND GREY	730m	North West
GW110867	0.00m-0.30m TOPSOIL 0.30m-6.00m SAND YELLOW	731m	North
GW112351	0.00m-5.79m UNCONSOLIDATE ALL SANDS	732m	South
GW101889	0.00m-5.19m Unconsolidated Sand	734m	South
GW028206	0.00m-5.48m Sand White Water Supply	742m	North
GW107208	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	744m	South
GW024371	0.00m-1.21m Topsoil Black 1.21m-2.43m Sand Grey 2.43m-4.26m Sand Light Grey Water Supply	752m	North
GW025714	0.00m-3.04m Sand Water Supply	760m	South
GW028208	0.00m-0.30m Clay 0.30m-6.09m Sand White Water Supply	765m	North
GW112490	0.00m-0.30m TOPSOIL 0.30m-3.00m SAND GREY 3.00m-7.00m SAND VELLOW	779m	North
GW107215	0.00m-0.30m topsoil 0.30m-4.00m sand, brown	785m	South West
GW107845	0.00m-0.30m topsoil 0.30m-3.20m sand, yellow 3.20m-5.00m sand, grey	787m	South
GW111613	0.00m-0.40m TOPSOIL 0.40m-2.00m SAND GREY 2.00m-4.00m SAND DARK BROWN 4.00m-6.00m SAND LIGHT BROWN	789m	North

Groundwater No	Drillers Log	Distance	Direction
GW107861	0.00m-6.00m sand	802m	North
GW024117	0.00m-0.30m Sand Grey 0.30m-5,48m Sand White Water Supply	804m	North
GW106729	0.00m-0.30m topsoil 0.30m-2.20m sand, brown 2.20m-4.00m sand, grey	807m	South
GW107170	0.00m-0.30m topsoil 0.30m-3.20m sand, brown 3.20m-4.00m sand, g rey	815m	South West
GW106458	0.00m-0.30m topsoil 0.30m-4.00m sand, white	818m	South West
GW072912	0.00m-6.00m Brown Sand	819m	South West
GW108274	0.00m-4.88m sand	821m	South West
GW105752	0.00m-7.32m sand, with small sea shells	823m	South West
GW106263	0.00m-0.30m topsoil 0.30m-3.00m sand, brown 3.00m-4.00m silt,sand grey 4.00m-6.00m sand, brown	825m	South
GW024669	0.00m-4.57m Sand Water Supply	828m	North
GW025559	0.00m-3.04m Sand Water Supply	830m	South West
GW023136	0.00m-3.20m Sand Water Supply	832m	North
GW023185	0.00m-0.91m Sand 0.91m-4.26m Sand White Water Supply	833m	North
GW107118	0.00m-6.00m Sand	834m	North
GW023125	0.00m-5.18m Sand Water Supply	839m	North
GW101586	0.00m-5.79m Unconsolidated sand with sea shells	841m	South
GW023573	0.00m-4.87m Sand Water Supply	842m	North
GW106136	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.20m-4.00m sand, yellow with shells	845m	South
GW111442	0.00m-4.27m UNCONSOLIDATED ALL SAND	845m	South West
GW025703	0.00m-4.57m Driller 4.57m-6.09m Sand	847m	North
GW106092	0.00m-4.58m sand, unconsolidated	849m	North
GW106382	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-6.00m sand, yelow small shell	849m	North
GW108266	0.00m-0.30m topsoil 0.30m-4.20m sand, yellow 4.20m-6.00m sand, white	850m	North
GW106957	0.00m-7.32m Sand, unconsolidated	855m	North
GW027339	0.00m-1.52m Sand 1.52m-3.04m Sand Fossils:shell Fragments Water Supply	857m	South
GW106038	0.00m-7.00m sand	858m	South
GW101474	0.00m-4.27m SAND, UNCONSOLIDATED (SMALL SEA SHELLS)	859m	South
GW108290	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-6.00m sand, grey	865m	North
GW023547	0.00m-3.35m Soil Sandy	866m	South West
GW108529	0.00m-0.30m Topsoil 0.30m-4.50m Sand, yellow 4.50m-6.00m Sand, grey	866m	North
GW105715	0.00m-0.30m topsoil 0.30m-2.50m sand, light brown 2.50m-4.00m sand, grey with samil shells	877m	South

Groundwater No	Drillers Log	Distance	Direction
GW111440	0.00m-5.18m UNCONSOLIDATED ALL SAND	882m	South West
GW108733	0.00m-4.50m sand, yellow 4.50m-6.00m sand, grey	884m	North
GW106963	0.00m-6.00m Sand	885m	North
GW026865	0.00m-0.30m Soil 0.30m-2.43m Sand	889m	South
GW106280	0.00m-6.41m sand	890m	North
GW113044	0.00m-7.32m UNCONSOLIDATED ALL SAND	891m	North
GW105680	0.00m-6.41m sand, unconsolidated	892m	North
GW106377	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	892m	South West
GW107920	0.00m-6.00m sand	893m	North
GW111226	0.00m-5.49m UNCONSOLIDATED ALL SAND	899m	South West
GW105741	0.00m-0.30m topsoil 0.30m-3.30m sand, ight brown 3.30m-4.00m sand, grey with shells	907m	South West
GW115044	0.00m-0.50m TOPSOIL 0.50m-3.50m SAND YELLOW 3.50m-5.00m SAND GREY	910m	North
GW101678	0.00m-6.00m Sand	918m	South West
GW114841	0.00m-0.30m TOPSOIL 0.30m-3.00m SAND BROWN 3.00m-5.00m SAND GREY AND SHELLS 5.00m-7.00m SAND BROWN	918m	South West
GW024245	0.00m-0.30m Sand Grey 0.30m-1.82m Sand White 1.82m-2.13m Loam 2.13m-5.48m Sand White Water Supply	924m	South
GW106561	0.00m-0.30m topsoil 0.30m-3.00m sand, brown 3.00m-4.00m sand, grey	927m	South
GW106879	0.00m-5.49m Sand, unconsolidated	935m	South West
GW106204	0.00m-0.30m topsoil 0.30m-2.00m sand, brown 2.00m-3.00m silty sand, grey 3.00m-4.00m mud, mariner grey 4.00m-6.00m sand, grey	943m	South West
GW111003	0.00m-0.30m TOPSOIL 0.30m-4.00m SAND YELLOW	946m	South
GW106961	0.00m-0.30m Topsoil 0.30m-5.30m Sand, yellow 5.30m-7.00m Sand, yellow, & shells	947m	North
GW106104	0.00m-7.00m sand	953m	North
GW108533	0.00m-0.30m Topsoil 0.30m-4.50m Sand, yelbow 4.50m-6.00m Sand, grey	958m	North
GW109942	0.00m-6.71m UNCONSOLIDATED ALL SANDS	958m	North
GW103229	0.00m-6.00m ALL SAND	960m	North
GW107177	0.00m-7.63m sand	968m	North
GW107505	0.00m-0.30m topsoil 0.30m-3.30m sand, grey 3.30m-5.00m sand, grey	970m	North
GW024366	0.00m-0.60m Sand Black 0.60m-4.57m Sand White Water Supply	976m	North
GW108696	0.00m-0.30m topsoil 0.30m-5.50m sand, yellow 5.50m-7.00m sand, grey	981m	North
GW107019	0.00m-0.30m topsoil 0.30m-4.00m sand, yellow 4.00m-7.00m sand, brown	982m	North

Groundwater No	Drillers Log	Distance	Direction
GW111315	0.00m-0.30m TOPSOIL 0.30m-3.20m SAND LIGHT BROWN 3.20m-4.00m SAND GREY	984m	South
GW106415	0.00m-6.10m sand, unconsolidated	986m	North
GW103780	0.00m-7.62m UNCONSOLIDATED ALL SANDS	989m	North
GW107051	0.00m-0.30m topsoil 0.30m-3.50m sand, yelow 3.50m-5.00m sand, brown sility 5.00m-7.00m sand, grey	989m	North
GW106371	0.00m-0.30m lopsoil 0.30m-3.30m sand, yellow 3.30m-5.00m sand, brown	991m	North
GW106053	0.00m-6.10m sand, unconsolidated	993m	North
GW108536	0.00m-0.30m Topsoil 0.30m-3.00m Sand, brown 3.00m-4.00m Sand, brange	997m	South West
GW111420	0.00m-9.15m UNCONSOLIDATE ALL SAND	997m	North
GW023475	0.00m-4.57m Sand Water Supply	999m	South West
GW106054	0.00m-6.10m sand, unconsolidated	999m	North
GW111237	0.00m-3.00m YELLOW SAND 3.00m-6.00m GREY SAND	1002m	North
GW107891	0.00m-0.30m topsoil 0.30m-4.20m sand, yellow 4.20m-6.00m sand, white 6.00m-7.00m sand, grey	1003m	North
GW107836	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-5.00m sand, grey	1006m	South West
GW110228	0.00m-8.85m UNCONSOLIDATED ALL SAND	1007m	North
GW107880	0.00m-0.30m topsoil 0.30m-2.60m sand, yellow 2.60m-4.00m sand, grey	1011m	South
GW100664	0.00m-5.79m Unconsolidated all Sand	1014m	North
GW110842	0.00m-8.54m UNCONSOLIDATED ALL SAND	1017m	North
GW023458	0.00m-0.45m Sand Grey 0.45m-4.87m Sand White Water Supply	1027m	South West
GW107273	0.00m-4.00m sand	1037m	South West
GW106413	0.00m-6.10m sand, unconsolidated	1038m	North
GW110566	0.00m-0.30m TOPSOIL 0.30m-3.00m SAND YELLOW 3.00m-4.00m SAND GREY	1045m	South West
GW106619	0.00m-0.30m topsoil 0.30m-2.30m sand, brown 2.30m-4.00m sand, grey	1049m	South West
GW111439	0.00m-7.32m UNCONSOLIDATED ALL SAND	1054m	North
GW107824	0.00m-0.30m topsoil 0.30m-3.40m sand, yellow 3.40m-5.00m sand, grey	1055m	South West
GW107846	0.00m-0.30m topsoil 0.30m-4.50m sand, brown 4.50m-6.00m sand, grey	1058m	North West
GW028300	0.00m-0.45m Topsoil 0.45m-1.37m Sand White Water Supply 1.37m-152m Clay 1.52m-2.59m Sand White Water Supply 2.59m-2.60m Clay Shale	1064m	West
GW106387	0.00m-7.32m sand,	1066m	North
GW106408	0.00m-0.30m topsoil 0.30m-2.80m sand, brown 2.80m-4.00m sand, yellow	1082m	South West

Groundwater No	Drillers Log	Distance	Direction
GW106229	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-5.00m silty, dark brown 5.00m-6.00m sand, grey	1083m	South West
GW110446	0.00m-0.30m TOPSOIL 0.30m-3.00m SAND YELLOW 3.00m-6.00m SAND GREY AND SHELLS	1093m	North
GW025558	0.00m-5.94m Sand Water Supply	1100m	North
GW105819	0.00m-0.30m topsoil 0.30m-2.00m sand, brown 2.00m-4.00m sand, yellow	1100m	South
GW108049	0.00m-0.30m topsoil 0.30m-3.20m sand, yellow 3.20m-4.00m sand, yrey	1100m	South West
GW101815	0.00m-5.50m SAND	1101m	North
GW107773	0.00m-6.10m Sand, unconsolidated	1107m	South West
GW108304	0.00m-16.00m Sand	1109m	South West
GW105589	0.00m-0.30m topsoil 0.30m-2.30m sand, grey 2.30m-3.00m sand, plain brown 3.00m-4.00m sand, grey	1116m	North
GW106976	0.00m-0.30m Topsoil 0.30m-2.50m Sand, brown 2.50m-4.00m Sand, grey	1117m	South West
GW106713	0.00m-0.30m topsoil 0.30m-2.50m sand, white 2.50m-4.00m sand, grey	1119m	South West
GW106767	0.00m-6.00m sand	1128m	North
GW023995	0.00m-0.60m Sand Grey 0.60m-5.79m Sand White Water Supply	1132m	North
GW024352	0.00m-5.63m Sand Water Supply	1138m	North
GW109936	0.00m-0.30m TOPSOIL 0.30m-3.30m SAND YELLOW 3.30m-5.00m SAND,DARK BROWN SILTY 6.00m-7.50m SAND, LIGHT BROWN	1141m	South West
GW101814	0.00m-5.00m SAND	1142m	North
GW031412	0.00m-6.40m Sand Water Supply	1145m	South
GW107590	0.00m-0.30m topsoil 0.30m-2.50m sand, prown 2.50m-4.00m sand, grey and shells	1148m	North
GW026481	0.00m-4.26m Sand Water Supply	1153m	South West
GW106832	0.00m-5.79m sand, unconsolidated	1155m	North
GW024397	0.00m-3.50m Sand Water Supply	1158m	South West
GW101871	0.00m-5.79m Unconsolidated Sand with small seashells.	1170m	North
GW105761	0.00m-1.50m sand, fill tiles 1.50m-5.50m sand, yellow 6.50m-7.00m sand, yellow with crushed shells	1175m	North
GW101025	0.00m-5.00m SAND	1178m	North
GW107648	0.00m-0.30m topsoil 0.30m-2.50m sand, prown 2.50m-4.00m sand, grey	1179m	South West
GW108222	0.00m-0.30m topsoil 0.30m sand, yellow 3.30m-5.20m sand, brown 5.20m-6.00m sand, grey	1180m	North
GW105516	0.00m-8.23m UNCONSOLIDATED ALL SANDS	1183m	North
GW110420	0.00m-0.30m TOPSOIL 0.30m-4.20m SAND BROWN 4.20m-6.00m SAND FELLOW	1183m	South West

Groundwater No	Drillers Log	Distance	Direction
GW106375	0.00m-0.30m topsoil 0.30m-3.30m sand, brown 3.30m-8.00m sand, yellow	1184m	North
GW105822	0.00m-0.30m topsoil 0.30m-2.20m sand, brown 2.20m-4.00m sand, yellow	1188m	South West
GW107851	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-4.00m sand, yellow and shells	1189m	South West
GW108535	0.00m-5.20m Sand, yellow 5.20m-7.00m Sand, yellow & crushed Shells	1194m	North
GW108349	0.00m-0.30m topsoil 0.30m-3.20m sand, ignb brown 3.20m-4.00m sand, grey	1197m	South
GW108402	0.00m-8.54m Sand, unconsolidated	1201m	North
GW109029	0.00m-0.10m CONCRETE 0.10m-4.00m BROWN SANDS SILTY	1206m	North West
GW110866	0.00m-2.00m SAND YELLOW 2.00m-4.00m SAND BROWN 4.00m-6.00m SAND GREY	1216m	South West
GW106276	0.00m-5.00m sand	1223m	North
GW107270	0.00m-5.50m sand	1226m	South West
GW106396	0.00m-0.30m topsoil 0.30m-2.00m sand, brown 2.00m-5.00m sand, sitly brown 5.00m-5.00m sand, grey	1231m	South West
GW023997	0.00m-3.65m Sand White Water Supply 3.65m-4.26m Sand Grey 4.26m-4.28m Sand Grey Clay	1238m	South West
GW107298	0.00m-6.00m sand	1243m	North
GW105586	0.00m-0.20m top soil 0.20m-2.50m sand, brown 2.50m-4.00m sand, grey	1246m	South West
GW105728	0.00m-0.30m topsoil 0.30m-1.50m sand, light brown 1.50m-5.00m sand, yellow	1249m	North
GW106484	0.00m-0.30m topsoil 0.30m-2.90m sand, brown 2.90m-4.00m sand, grey	1251m	South West
GW107669	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-6.00m sand, grey	1251m	North
GW106007	0.00m-0.30m topsoil 0.30m-2.00m sand, light brown 2.00m-6.00m sand, yellow 6.00m-7.00m sand, yellow with shells	1258m	North
GW106456	0.00m-0.30m topsoil 0.30m-6.00m sand	1259m	North
GW107020	0.00m-5.00m sand	1259m	North West
GW110323	0.00m-9.15m UNCONSOLIDATED ALL SANDS	1260m	North
GW106898	0.00m-3.96m Sand, unconsolidated	1262m	South West
GW072078	0.00m-6.00m SAND	1267m	South
GW112428	0.00m-0.30m TOPSOIL 0.30m-3.00m SAND YELLOW 3.00m-5.00m SAND SILTY DARK BROWN 5.00m-6.00m SAND BROWN	1274m	South West
GW106020	0.00m-0.30m topsoil 0.30m-2.50m sand, light brown 2.50m-4.00m sand, grey	1280m	South West
GW108563	0.00m-8.23m Sand, unconsolidated	1284m	North
GW107458	0.00m-0.30m topsoil 0.30m-1.30m ash, grey silty 1.30m-3.50m sand, grey 3.50m-5.00m sand, silty brown 5.00m-6.00m sand, grey	1285m	South West

Groundwater No	Drillers Log	Distance	Direction
GW025711	0.00m-4.87m Sand Water Supply	1289m	North
GW108652	0.00m-0.30m topsoil 0.30m-7.00m sand, yellow	1290m	North
GW108513	0.00m-0.30m Topsoil 0.30m-3.40m Sand, yellow 3.40m-4.00m Sand, grey	1291m	South West
GW106367	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1296m	South West
GW106034	0.00m-0.30m topsoil 0.30m-2.00m sand, light brown 2.00m-4.00m sand, grey	1297m	South West
GW108661	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-5.50m sand, dark brown 5.50m-7.00m sand, light brown	1298m	South West
GW108302	0.00m-4.58m sand,	1309m	South West
GW107695	0.00m-7.50m sand	1310m	North
GW108549	0.00m-0.30m Topsoil 0.30m-4.20m Sand, yellow 4.20m-7.00m Sand, grey	1310m	North
GW106356	0.00m-0.30m topsoil 0.30m-2.20m sand, brown 2.20m-4.00m sand, grey	1311m	South West
GW100520	0.00m-7.00m SAND	1319m	North
GW108816	0.00m-8.54m sand	1319m	North
GW106369	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-5.00m sand, silty dark brown 5.00m-6.00m sand, fine grey	1324m	South West
GW106368	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.50m sand, sitly brown 4.50m-6.00m sand, sitly grey	1328m	South West
GW107722	0.00m-6.71m Sand, unconsolidated	1329m	North
GW106655	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-4.00m sand, grey	1331m	South West
GW026388	0.00m-4.26m Sand Water Supply	1332m	North
GW108550	0.00m-0.30m Topsoil 0.30m + 20m Sand, yelow 4.20m - 7.00m Sand, yrey	1333m	North
GW108574	0.00m-6.10m sand	1339m	North
GW111437	0.00m-4.88m UNCONSOLIDATED ALL SAND	1339m	South West
GW105769	0.00m-0.30m topsoil 0.30m-3.30m sand, ight yellow 3.30m-4.00m sand, grey with shells	1340m	South West
GW105460	0.00m-2.00m SAND,DARK, BROWN, SILTY 2.00m-4.00m SAND GREY 4.00m-4.50m MUD BROWN	1346m	North
GW110206	0.00m-5.79m UNCONSOLIDATED ALL SAND.	1349m	North West
GW111225	0.00m-2.00m SAND BROWN 2.00m 5.00m SAND DARK BROWN 6.00m-8.00m SAND LIGHT BROWN	1352m	North
GW111896	0.00m-0.30m TOPSOIL 0.30m-2.00m YELLOW SAND 2.00m-4.00m GREY SAND	1353m	South West
GW023994	0.00m-3.04m Silt River Water Supply 3.04m-5.48m Sand Grey 5.48m-5.50m Clay Grey	1357m	South West
GW100679	0.00m-4.58m unconsolidated all Sand with Small Sea Shells	1357m	North

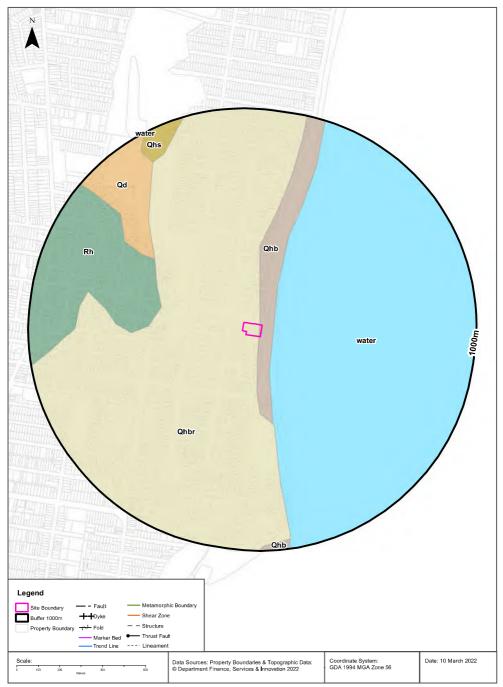
Groundwater No	Drillers Log	Distance	Direction
GW105742	0.00m-0.30m topsoil 0.30m-2.40m sand, light brown 2.40m-3.60m sand, silty white 3.60m-4.00m sand, silty yellow	1364m	North West
GW024373	0.00m-5.18m Sand Yellow Water Supply	1368m	North
GW107576	0.00m-8.54m Sand, unconsolidated	1375m	North
GW110877	0.00m-2.00m SAND YELLOW 2.00m-5.00m SAND BROWN DARK 5.00m-6.00m SAND LIGHT BROWN	1375m	South West
GW108650	0.00m-0.30m topsoil 0.30m 1.50m sand, yellow 1.50m-4.00m sand, brown	1398m	North West
GW025539	0.00m-0.60m Sand 0.60m-4.57m Sand White Water Supply	1402m	North
GW106485	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1402m	South West
GW023427	0.00m-5.48m Sand Water Supply	1403m	North
GW107532	0.00m-5.50m sand	1403m	North West
GW100564	0.00m-10.00m Sand	1411m	North
GW106400	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand,g rey	1411m	South West
GW110727	0.00m-3.00m SAND YELLOW 3.00m-5.00m DARK BROWN SAND 5.00m-6.00m LIGHT BROWN SAND	1412m	North
GW105569	0.00m-0.30m TOPSOIL 0.30m-4.00m YELLOW SAND 4.00m-4.50m BROWN MARINE / SHELLS	1413m	South West
GW108321	0.00m-5.60m sand	1416m	North
GW108301	0.00m-0.30m topsoil 0.30m-4.00m sand, brown 4.00m-5.00m sand, grey and mud 5.00m-6.00m sand, brown	1424m	South West
GW107595	0.00m-5.49m Sand, unconsolidated	1431m	North
GW105592	0.00m-0.20m topsoil 0.20m-1.50m sand.grey 1.50m-4.00m sand, brown 4.00m-6.00m sand, yellow	1434m	South West
GW106084	0.00m-0.30m topsoil 0.30m-4.00m sand, brown 4.00m-6.00m sand, yellow	1435m	North
GW107314	0.00m-8.23m Sand, unconsolidated	1440m	North
GW024060	0.00m-0.60m Soil Sandy 0.60m-0.76m Sand Hard 0.76m-3.65m Sand White Water Supply	1442m	South West
GW111245	0.00m-0.30m TOPSOIL 0.30m-2.50m SAND YELLOW 2.50m-4.00m SAND GREY	1448m	South West
GW107422	0.00m-0.30m topsoil 0.30m-3.20m sand, brown 3.20m-4.00m sand, grey	1455m	South West
GW106881	0.00m-0.30m Topsoil 0.30m-2.50m Sand, brown 2.50m-4.20m Sand, sity yellow 4.20m-6.00m Sand, grey	1462m	North West
GW110302	0.00m-5.49m UNCONSOLIDATED ALL SAND	1463m	South West
GW110493	0.00m-0.30m TOPSOIL 0.30m-2.50m YELLOW SAND 2.50m-4.00m GREY SAND	1463m	South West
GW107690	0.00m-0.30m topsoil 0.30m-3.50m sand, brown 3.50m-4.00m sand, grey	1467m	South West

Groundwater No	Drillers Log	Distance	Direction
GW107682	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1470m	North West
GW106846	0.00m-7.93m Sand, unconsolidated, with small sea shells	1479m	North
GW108747	0.00m-0.30m topsoil 0.30m-2.50m sand, grey 2.50m-1.00m sand, grey	1482m	South West
GW106308	0,00m-8.54m sand	1485m	South West
GW108015	0.00m-0.50m topsoil 0.50m-3.50m sand, yellow 3.50m-5.00m sand, grey	1485m	South West
GW023134	0.00m-5.33m Sand Water Supply	1493m	North
GW101056	0.00m-6.00m SAND	1493m	North
GW106101	0.00m-0.30m topsoil 0.30m-2.00m sand, brown 2.00m-2.30m rock, coffee 2.30m-3.00m sand, brown 3.00m-5.00m sand, white	1499m	South West
GW108716	0.00m-5.00m sand	1501m	North West
GW023613	0.00m-0.91m Sand Grey 0.91m-6.40m Sand White Water Supply	1504m	North
GW110418	0.00m-0.30m TOPSOIL 0.30m-4.50m SAND YELLOW 4.50m-5.00m SAND GREY AMD SHELLS	1512m	North
GW075059	0.00m-0.50m clay; red brown; dry fill material 0.50m-1.00m sander dust 1.00m-1.50m clay; with incorporated sander dust and resin material 1.50m-2.00m clay; red dry 2.00m-2.80m clay; layer of grey black material 3.20m-4.00m clay; red brown dry 4.00m-17.50m shale; moist light brown layer with minimal brown clay component	1513m	North
GW107661	0.00m-0.30m topsoil 0.30m-4.00m sand, yellow 4.00m-7.00m sand, grey	1516m	North
GW107279	0.00m-0.30m topsoil 0.30m-1.20m sand, brown 1.20m-2.00m rock, coffee 2.00m-4.00m sand, brown 4.00m-5.00m sand, yellow	1518m	South West
GW106431	0.00m-7.63m sand, unconsolidated	1522m	North
GW107506	0.00m-0.30m topsoil 0.30m-2,50m sand, brown 2,50m-4,00m sand, grey	1523m	North West
GW107078	0.00m-0.30m topsoil 0.30m-3.00m sand, grey 3.00m-4.00m sand, grey	1525m	South West
GW107735	0.00m-0.30m topsoil 0.30m-7.00m sand, yellow	1526m	North
GW107775	0.00m-6.71m Sand, unconsolidated	1541m	North
GW107889	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-6.00m sand, yrey	1543m	North
GW114507	0.00m-0.30m TOPSOIL 0.30m-2.00m SAND VELLOW 2.00m-4.00m SAND GREY/SILTY AND SHELLS 4.00m-5.00m SAND BROWN	1551m	South West
GW108715	0.00m-7.93m sand	1558m	North
GW111414	0.00m-6.00m ALL SAND	1565m	North West
GW107847	0.00m-0.30m topsoil 0.30m-2.50m sand, grellow 2.50m-4.00m sand, grey	1568m	South West
GW106984	0.00m-6.00m Sand	1583m	North
GW106189	0.00m-5.00m sand	1584m	South West

Groundwater No	Drillers Log	Distance	Direction
GW072299	0.00m-1.53m Brick Tile Filling 1.53m-8.44m Unconsoldated Sand With Small Sea Shells	1596m	North
GW107184	0.00m-5.00m sand	1598m	North
GW107747	0.00m-6.00m ALL SAND	1610m	North West
GW108084	0.00m-6.00m sand	1614m	North West
GW109152	0.00m-6.00m BLACK CLAY 6.00m-20.00m RED CLAY 20.00m-78.00m FINE GREY SANDSTONE 78.00m-80.00m FINE GREY SANDSTONE 130.00m-132.00m SHALE 132.00m-198.00m FINE GREY SANDSTONE 132.00m-198.00m FINE GREY SANDSTONE 198.00m-204.00m SHALE	1614m	North West
GW101329	0.00m-4.57m unconsolidated - all sand.	1616m	North West
GW106416	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, silty grey 4.00m-5.00m sand, grey	1621m	South West
GW107023	0.00m-1.50m Fill, Rocks Sand 1.50m-4.00m Sand, brown, Silty 4.00m-6.00m Sand, grey	1636m	South West
GW111140	0.00m-7.00m ALL SAND	1643m	North
GW108743	0.00m-7.32m sand	1648m	North
GW106301	0.00m-4.27m sand	1650m	South West
GW101224	0.00m-7.62m Unconsolidated - all sand with small sea shells	1655m	North
GW106481	0.00m-0.30m topsoil 0.30m-2.70m sand, light brown 2.70m-4.00m sand, grey	1655m	South West
GW106270	0.00m-5.00m sand	1658m	North West
GW023262	0.00m-6.70m Sand Water Supply	1661m	South West
GW112387	0.00m-0.30m TOPSOIL 0.30m-2.00m SAND YELLOW 2.00m-4.00m SAND GREY SILTY,AND SHELLS 4.00m-7.50m SAND BROWN	1664m	South West
GW109925	0.00m-0.30m TOPSOIL 0.30m-2.70m YELLOW SAND 2.70m-4.00m BROWN SAND,SHELLS AND MUD 4.00m-6.00m LIGHT BROWN SAND	1672m	South West
GW072456	0.00m-6.00m	1674m	South West
GW107216	0.00m-3.50m sand, brown 3.50m-6.00m sand, grey	1676m	North
GW111925	0.00m-3.00m SAND YELLOW 3.00m-6.00m DARK BROWN SILTY SAND 6.00m-8.00m SAND LIGHT BROWN	1682m	North
GW109935	0.00m-7.63m UNCONSOLIDATED ALL SANDS	1684m	North
GW106175	0.00m-0.30m topsoil 0.30m-4.00m sand, yellow 4.00m-6.00m sand, grey	1685m	North
GW107622	0.00m-7.01m Sand, unconsolidated	1685m	North
GW106388	0.00m-0.30m topsoil 0.30m-1.50m fill, bricks etc 1.50m-2.20m sand, grey 3.20m-3.20m sand, grey 3.20m-4.00m sand, brown	1689m	North West
GW106850	0.00m-0.30m topsoil 0.30m-2.00m sand, brown 2.00m-3.00m sand, black 3.00m-4.00m sand, grey with big shells 4.00m-5.00m sand, brown	1689m	South West
GW110202	0.00m-5.50m ALL SAND	1689m	North

Groundwater No	Drillers Log	Distance	Direction
GW106860	0.00m-0.30m topsoil 0.30m-3.00m sand, jellow 3.00m-4.50m sand, brown silty 4.50m-5.00m sand, grey	1693m	North
GW107450	0.00m-0.30m topsoil 0.30m-2.20m sand, yellow 2.20m-4.00m sand, grey	1695m	North
GW108633	0.00m-7.32m sand	1695m	North
GW025816	0.00m-6.09m Soil Sandy Water Supply	1698m	North
GW106883	0.00m-0.30m Topsoil 0.30m-4.30m Sand, yellow 4.30m-6.00m Sand, brown	1702m	North
GW107849	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-5.00m sand, grey 5.00m-7.00m sand, brown	1702m	North
GW106894	0,00m-0,30m Topsoil 0.30m-1.50m Fill - Rocks 1.50m+10m Sand, grey	1712m	South West
GW107859	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-5.20m sand, grey 5.20m-7.00m sand, brown	1712m	North
GW109945	0.00m-5.50m SAND YELLOW 5.50m-7.50m SAND WHITE AND SHELLS	1715m	North
GW025557	0.00m-3.35m Sand Water Supply	1718m	South West
GW107045	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, işily brown 4.00m-6.00m sand, lişh brown	1725m	North
GW106275	0.00m-5.00m sand	1732m	South West
GW108288	0.00m-0.30m topsoil 0.30m-2.50m sand, grey 2.50m-4.00m sand, brown	1745m	North West
GW107275	0,00m-0,30m topsoil 0.30m-3.00m sand, brown 3.00m-5.00m sand, black 5.00m-6.00m sand, brown	1750m	South West
GW107553	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1751m	South West
GW106861	0.00m-0.50m Topsoil & Fill 0.50m-2.50m Sand, yelbw 2.50m-4.00m Sand, grey	1752m	South West
GW106379	0.00m-0.30m topsoil 0.30m-3.50m sand, yellow 3.50m-6.00m sand, yellow with small shells	1753m	North
GW110710	0.00m-5.18m UNCONSOLIDATED ALL SAND	1753m	South West
GW023495	0.00m-5.48m Sand Water Supply	1755m	North West
GW106882	0.00m-5.00m Sand	1757m	North West
GW108097	0.00m-5.79m sand	1758m	South
GW105976	0.00m-8.23m sand, unconsolidated with small sea shells	1759m	South
GW108777	0.00m-0.30m topsoil 0.30m-6.00m sand, grey	1759m	North West
GW108655	0.00m-3.20m topsoil 0.30m-3.20m sand, yellow 3.20m-5.80m sand, silly brown 5.80m-7.00m sand, brown	1760m	South West
GW107879	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	1761m	South West
GW108176	0.00m-0.30m topsoil 0.30m-3.40m sand, yellow 3.40m-4.00m sand, grey	1761m	South

Groundwater No	Drillers Log	Distance	Direction
GW110652	0.00m-5.49m UNCONSOLIDATED ALL SANDS	1761m	North
GW110865	0.00m-0.30m TOPSOIL 0.30m-4.00m SAND BROWN	1761m	North West
GW107887	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-6.00m sand, grey	1766m	North
GW107206	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1768m	South West
GW106117	0.00m-0.30m topsoil 0.30m-1.50m sand, brown 1.50m-3.00m sand, grey 3.00m-4.00m sand, yellow with shells	1774m	South West
GW106618	0.00m-6.00m sand	1776m	North
GW107456	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, brown	1781m	South West
GW108568	0.00m-7.00m Sand	1784m	North
GW107664	0.00m-0.30m topsoil 0.30m-3.60m sand, brown 3.50m-5.00m sand, hard, black 5.00m-5.00m sand, grey	1786m	South West
GW105587	0.00m-0.02m topsoil 0.02m-6.00m sand, yellow	1792m	North
GW108690	0.00m-0.50m fill, rocks 0.50m-2.20m sand, yellow 2.20m-3.40m sand, grey 3.40m-6.00m sand, hard dark brown 6.00m-7.00m sand, light brown	1793m	South West
GW106009	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1794m	South
GW111229	0.00m-6.00m ALL SAND	1794m	North West
GW106392	0.00m-0.30m topsoil 0.30m-1.00m sand, brown 1.00m-3.00m mud, grey 3.00m-5.00m sand, sitly grey with shells 5.00m-6.00m sand, round	1795m	South West
GW106424	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	1800m	South West
GW108005	0.00m-0.30m topsoil 0.30m-2.50m sand, yellow 2.50m-4.00m sand, grey	1804m	South West
GW106393	0.00m-0.30m topsoil 0.30m-3.00m sand, dark brown 3.00m-6.00m sand, slity light brown	1807m	South West
GW108646	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-5.00m sand, lank brown 5.00m-7.00m sand, light brown	1814m	South West
GW072795	0.00m-8.40m Unconsolidated Sand With Small Seashells	1815m	North
GW107060	0.00m-0.30m topsoil 0.30m-3.00m sand, brown 3.00m-4.00m sand, grey	1821m	South West
GW105972	0.00m-1.50m fill bricks 1.50m-3.00m sand, brown 3.00m-5.00m sand, yellow	1827m	South West
GW106224	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-6.00m sand, yellow with small shells	1828m	North
GW107731	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-7.00m sand, yellow and shells	1829m	North
GW108689	0.00m-0.30m topsoil 0.30m-1.70m sand, brown 1.70m-4.00m sand, grey	1829m	South West
GW106907	0.00m-0.30m Topsoil 0.30m-1.80m Sand, yellow 1.80m-4.00m Sand, brown	1836m	North


Groundwater No	Drillers Log	Distance	Direction
GW107281	0.00m-0.30m topsoil 0.30m-1,50m sand, brown 1.50m-3.50m sand, black platy 3.50m-9.00m sand, yellow	1838m	South West
GW106834	0.00m-0.50m topsoil 0.50m-2.20m sand, yellow 2.20m-4.00m sand, grey	1839m	South West
GW107095	0.00m-5.79m sand, unconsolidated	1840m	South West
GW107493	0.00m-7.32m Sand, unconsolidated	1849m	North
GW106112	0.00m-0.30m topsoil 0.30m-2.30m sand, brown 2.30m-4.00m sand, yellow with some shells	1852m	North
GW108028	0.00m-0.30m topsoil 0.30m-2.50m sand, brown and fill 2.50m-4.50m sand, ligth brown 4.50m-5.00m sand, grey	1857m	South
GW107357	0.00m-6.10m Sand, unconsolidated	1862m	North
GW107372	0.00m-5.79m Sand, unconsolidated	1864m	North
GW023354	0.00m-3.65m Sand Water Supply	1865m	North West
GW106032	0.00m-0.30m topsoil 0.30m-2.20m sand, brown 2.20m-2.40m rock coffee 2.40m-4.00m sand, brown	1867m	South West
GW107482	0.00m-0.30m topsoil 0.30m-1.20m fill, bricks 1.20m-3.20m sand, brown 3.20m-5.40m sand, hard block 5.40m-6.00m sand, yellow	1868m	South West
GW110422	0.00m-0.30m TOPSOL 0.30m-4.00m SAND WHITE 4.00m-4.00m SAND, GREY WITH SHELLS	1876m	North
GW108649	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-5.00m sand, light brown 5.00m-5.00m sand, light brown	1880m	South West
GW107169	0.00m-0.30m topsoil 0.30m-2.50m sand, grey 2.50m-3.50m mud, grey marine 3.50m-5.00m sand, black 5.00m-5.00m sand, brown	1897m	South West
GW108035	0.00m-0.30m topsoil 0.30m-2.50m sand, grey 2.50m-4.00m sand, grey	1897m	South
GW107364	0.00m-5.18m sand	1899m	North
GW109938	0.00m-0.30m TOPSOIL 0.30m-4.30m YELLOW SAND 4.30m-6.00m GREY SAND AND SHELLS	1900m	South West
GW110189	0.00m-6.00m ALL SAND	1904m	North
GW107445	0.00m-5.00m sand	1907m	South
GW107684	0.00m-0.30m topsoil 0.30m-4.20m sand, yellow 4.20m-5.00m sand, grey	1914m	North
GW106847	0,00m-0,30m topsoil 0,30m-2,50m sand, brown 2.50m-4.00m sand, grey and big shells 4,00m-5,50m sand, dark brown consolidated 5,50m-7,00m sand, sitty brown	1915m	South West
GW107373	0.00m-6.00m sand	1915m	North
GW106807	0.00m-0.30m topsoil 0.30m-2.50m sand, brown 2.50m-4.00m sand, grey	1916m	South
GW106133	0.00m-4.88m sand, with small shells	1917m	South West
GW108570	0.00m-7.93m Sand, unconsolidated	1924m	South West

Groundwater No	Drillers Log	Distance	Direction
GW108600	0.00m-5.79m sand,	1930m	North
GW109491	0.00m-0.30m TOPSOIL 0.30m-2.70m YELLOW SAND 2.70m-4.00m GREY SAND	1932m	South
GW108694	0.00m-0.30m topsoil 0.30m-3.00m sand, yellow 3.00m-6.00m sand, brown hard 6.00m-7.00m sand, light brown	1936m	South West
GW105591	0.00m-0.20m top soil 0.20m-1.00m sand, grey 1.00m-3.00m sand, brown 3.00m-6.00m sand, yelleo	1942m	North
GW106780	0.00m-7.32m sand, unconsolidated	1942m	North
GW107192	0.00m-7.32m sand	1946m	North
GW107799	0.00m-5.50m sand	1947m	North
GW107896	0.00m-0.30m topsoil 0.30m-4.50m sand, yellow 4.50m-6.00m sand, grey	1951m	North
GW110442	0.00m-0.30m TOPSOIL 0.30m-4.50m SAND YELLOW 4.50m-6.00m SAND GREY AND SHELLS	1951m	North
GW108496	0.00m-6.10m Sand , unconsolidated	1952m	North
GW107606	0.00m-7.00m sand	1954m	North
GW106755	0.00m-0.30m topsoil 0.30m-1.50m fill and bricks 1.50m-4.00m sand, grey	1955m	South
GW107114	0.00m-5.85m Sand, unconsolidated	1956m	North
GW111497	0.00m-6.00m ALL SAND	1956m	North
GW110167	0.00m-0.30m TOPSOIL 0.30m-3.50m YELLOW SAND 3.50m-5.50m GREY SAND AND SHELLS 5.50m-6.00m GREY SAND AND SHELLS	1957m	North
GW110227	0.00m-3.00m SAND BROWN 3.00m-5.00m SAND BLACK HARD SAND 6.00m-7.00m SAND LIGHT BROWN	1968m	South West
GW111561	0.00m-6.00m ALL SAND	1970m	North
GW023485	0.00m-6.70m Sand Water Supply	1975m	North
GW108109	0.00m-0.30m topsoil 0.30m-2,20m sand, light brown 2.20m-4.00m sand, yellow	1979m	South West
GW107374	0.00m-10.00m sand	1980m	North
GW108559	0.00m-0.30m Topsoil 0.30m-4.50m Sand, yellow 4.50m-7.00m Sand, grey	1982m	North
GW107803	0.00m-6.10m Sand, unconsolidated	1983m	North
GW110219	0.00m-6.00m ALL SAND	1983m	North
GW111954	0.00m-3.00m SAND YELLOW 3.00m-5.00m SAND BROWN 5.00m-7.00m SAND GREY	1991m	South West
GW110271	0.00m-6.00m ALL SAND	1992m	North
GW112523	0.00m-1.00m TOPSOIL 1.00m-2.00m SAND SILTY YELLOW 2.00m-4.00m SAND SILTY GREY 4.00m-6.00m SAND GREY	1994m	North
GW107299	0.00m-5.60m sand	1995m	North
GW016970	0.00m-7.31m Sand	1996m	South West

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

Geology

277 The Grand Parade, Ramsgate, NSW 2217

Geological Units 1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dist	Dir
Qhbr	Quartz sand, minor shell content, interdune (swale) silt and fine sand				Quaternary		Sydney	0m	On-site
Qhb	Coarse quartz sand, verying amounts of shell fragment				Quaternary		Sydney	0m	On-site
water							Sydney	55m	East
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	391m	West
Qd	Medium to fine-grained marine sand with podsols				Quaternary		Sydney	509m	North West
Qhs	Peat, sandy peat, and mud.				Quaternary		Sydney	862m	North West

Geological Structures 1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Distance	Direction
N/A	No records in buffer				

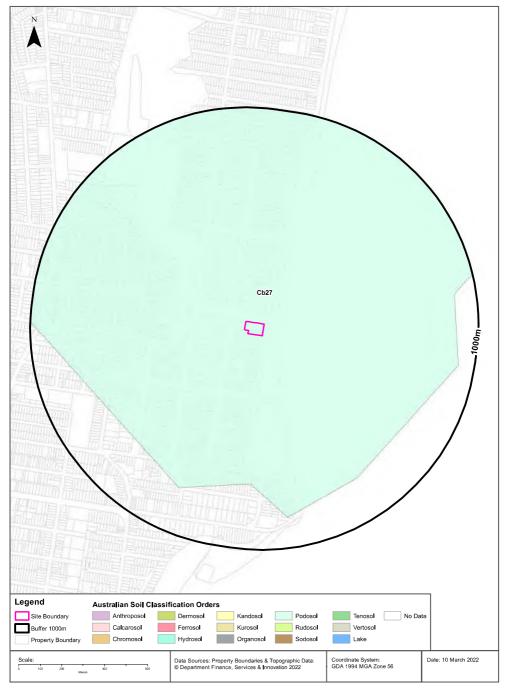
Geological Data Source : NSW Department of Industry, Resources & Energy

© State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

277 The Grand Parade, Ramsgate, NSW 2217

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

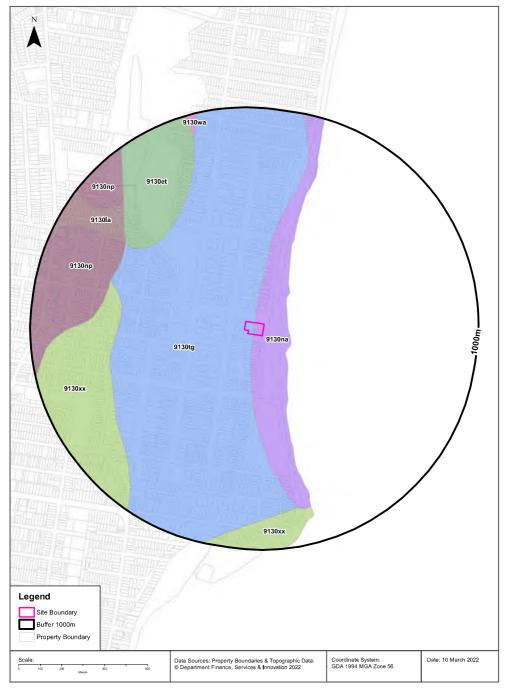
Atlas of Australian Soils

Soils

277 The Grand Parade, Ramsgate, NSW 2217

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Cb27	Podosol	Coastal sand plains and dunes, lagoons, and swampy areas: chief soils are leached sands (Uc2.3 and Uc2.2). Associated are dunes of siliceous sands (Uc1.2) and/or calcareous sands (Uc1.1) fringing the coastline; and swampy areas of (Uf6) soils and (Uc1.2) soils with peaty surfaces. Unit Cb27 has similarities with units Cb28 and Ca6.	0m	On-site

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

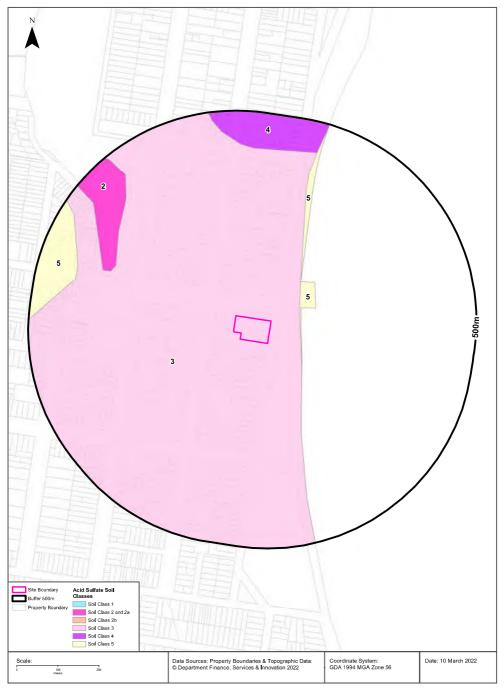
Soil Landscapes of Central and Eastern NSW

Soils

277 The Grand Parade, Ramsgate, NSW 2217

Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:


Soil Code	Name	Distance	Direction
<u>9130na</u>	Narrabeen	0m	On-site
<u>9130tg</u>	Tuggerah	0m	On-site
<u>9130et</u>	Ettalong	546m	North West
<u>9130xx</u>	Disturbed Terrain	577m	South West
<u>9130np</u>	Newport	644m	West
<u>9130la</u>	Lambert	671m	North West
<u>9130wa</u>	Warriewood	892m	North

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

277 The Grand Parade, Ramsgate, NSW 2217

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
3	Works more than 1 metre below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 1 metre below natural ground surface, present an environmental risk	Bayside Local Environmental Plan 2021

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

277 The Grand Parade, Ramsgate, NSW 2217

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
В	Low Probability of occurrence, 6-70% chance of occurrence,	0m	On-site
A	High Probability of occurrence. >70% chance of occurrence.	317m	North West
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	884m	South

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

277 The Grand Parade, Ramsgate, NSW 2217

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source : National Land and Water Resources Audit

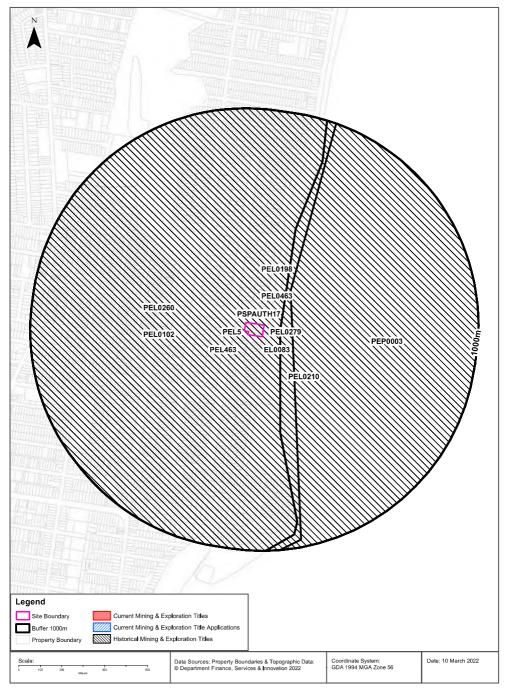
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

277 The Grand Parade, Ramsgate, NSW 2217

Mining Subsidence Districts


Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

277 The Grand Parade, Ramsgate, NSW 2217

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

277 The Grand Parade, Ramsgate, NSW 2217

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0210	THE AUSTRALIAN GAS LIGHT COMPANY (AGL), NORTH BULLI COLLIERIES PTY LTD			PETROLEUM	Petroleum	0m	On-site
PEL0279	THE ELECTRICITY COMMISSION OF NSW (TRADING AS PACIFIC POWER)	17/04/1990	11/11/1993	PETROLEUM	Petroleum	0m	On-site
PEL0198	JOHN STREVENS (TERRIGAL) NL			PETROLEUM	Petroleum	0m	On-site
PEL0463	DART ENERGY (APOLLO) PTY LTD	22/10/2008	6/03/2015	PETROLEUM	Petroleum	0m	On-site
PEL0013	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
PEL0102	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
PEL0005	AGL UPSTREAM INVESTMENTS PTY LIMITED	11/11/1993	4/03/2015	PETROLEUM	Petroleum	0m	On-site
PEL0260	NORTH BULLI COLLIERIES PTY LTD, AGL PETROLEUM OPERATIONS PTY LTD, THE AUSTRALIAN GAS LIGHT CO.	9/09/1981	8/03/1993	PETROLEUM	Petroleum	0m	On-site
PEL463	DART ENERGY (APOLLO) PTY LTD			MINERALS		0m	On-site
PEL5	AGL UPSTREAM INVESTMENTS PTY LIMITED			MINERALS		0m	On-site
PSPAUTH17	MACQUARIE ENERGY PTY LTD	8/03/2007	7/03/2008	PETROLEUM	Petroleum	0m	On-site
EL0083	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	01 Feb 1967	01 Feb 1968	MINERALS		0m	On-site
PEP0003	LONGREACH OIL LTD, ENDEAVOUR OIL COMPANY NL, RESOURCE EXPLORATION NL, LASKAN MINERALS PTY LTD			PETROLEUM	Petroleum	130m	East

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

277 The Grand Parade, Ramsgate, NSW 2217

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

Environmental Planning Instrument

277 The Grand Parade, Ramsgate, NSW 2217

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B4	Mixed Use		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		0m	On-site
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		0m	South West
SP2	Infrastructure	Classified Road	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		0m	West
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		20m	South
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		30m	South
B4	Mixed Use		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		60m	North
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		77m	North West
W2	Recreational Waterways		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		80m	North East
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		89m	South West
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		100m	North
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		100m	North
R2	Low Density Residentia		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		221m	South West
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		264m	West
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		269m	North West
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		345m	North West
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		456m	South West
R2	Low Density Residentia		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		631m	South
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		654m	North
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		681m	South West
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		707m	West
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		716m	North West
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		769m	South
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		805m	North West
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		813m	South West
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		838m	West
B4	Mixed Use		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		838m	West
B4	Mixed Use		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		840m	West
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		844m	West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		847m	West
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		852m	West
R3	Medium Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		853m	North West
R3	Medium Density Residential		Bayside Local Environmental Plan 2021			27/08/2021		853m	South West
W2	Recreational Waterways		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		860m	South
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		861m	South
R2	Low Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		882m	South West
SP2	Infrastructure	Electricity Generating Works	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		911m	South West
N2	Light Industrial		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		927m	North West
RE1	Public Recreation		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		936m	South West
R4	High Density Residential		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		939m	North West
SP2	Infrastructure	Classified Road	Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		940m	West
B2	Local Centre		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		950m	West
B2	Local Centre		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		951m	West
R4	High Density Residentia		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		957m	West
R2	Low Density Residentia		Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021		969m	South West
R2	Low Density Residentia		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		978m	North West
R4	High Density Residential		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		996m	West
R4	High Density Residential		Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021		997m	West

 $\label{eq:conversion} Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/$

Heritage Items

Heritage

277 The Grand Parade, Ramsgate, NSW 2217

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
<u>106039</u>	Botany Bay	Foreshore Rd, Botany NSW	1/16/007/0013	Historic	Nomination now ineligible for PPAL		72m	East

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1219	Cook Park	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	20m	North East
1223	Row of Araucaria trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	60m	North
1340	Fig trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	301m	North West

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1219	Cook Park	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	311m	South
1340	Fig trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	316m	North West
I 340	Fig trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	317m	North West
I 340	Fig trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	349m	North West
I 340	Fig trees	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	362m	North West
1339	Hawthorne Street Reserve / Leo Smith Reserve	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	532m	North West
1219	Cook Park	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	654m	North
I 341	Sans Souci Literary Institute	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	798m	West
246	Primrose House	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	837m	South
I 219	Cook Park	Item - General	Local	Bayside Local Environmental Plan 2021	27/08/2021	27/08/2021	27/08/2021	903m	South
294	Residential Flat Building, 'Roma'	Item - General	Local	Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021	952m	West
1295	Shops	Item - General	Local	Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021	952m	West
15	Former Ramsgate Methodist Church - Ramsgate Community Church	Item - General	Local	Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021	978m	North West
297	House and garden, 'Torwood'	Item - General	Local	Georges River Local Environmental Plan 2021	08/10/2021	08/10/2021	08/10/2021	997m	West

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards

277 The Grand Parade, Ramsgate, NSW 2217

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
No records in buffer		

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

277 The Grand Parade, Ramsgate, NSW 2217

277 The Grand Parade, Ramsgate, NSW 2217

Native Vegetation

What native vegetation exists within the dataset buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Dir
Plant_n	Plant_n: Plantation (native and/or exotic)			00: Not assessed	00: Not assessed	0: Not assessed	Native or Exotic Plantations	18m	East
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/Native	55m	North East
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Exotic Species >90%cover	405m	North
S_FoW12	S_FoW12: Coastal Swamp Paperbark-Swamp Oak Scrub	Swamp Oak Floodplain Forest		15: Grassy natives and exotics	31: Parkland open understorey	4: Very high	C.glauca/M.ericif olia	475m	North West
S_FoW03	S_FoW03: Coastal Freshwater Swamp Forest			18: Swampy sedges, shrubs, ferns and herbs	15: Regrowth	3: High	C.glauca/M.ericif olia	530m	North West
S_DSF21	S_DSF21: Coastal Sand Bangalay Forest	Bangalay Sand Forest		11: Semi sheltered dry/mesic	20: Previously cleared 1943	3: High	E.botryoides/A.co stata	531m	North West
Cleared	Cleared			00: Not assessed	00: Not assessed	0: Not assessed	Cleared	710m	North West
Water	Water			00: Not assessed	00: Not assessed	0: Not assessed	Water	926m	South
S_SW01	S_SW01: Estuarine Mangrove Forest			00: Not assessed	00: Not assessed	0: Not assessed	Mangroves	927m	South
S_SW03	S_SW03: Seagrass Meadows			00: Not assessed	00: Not assessed	0: Not assessed	Seagrass (DPI)	940m	South
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Constructed drainage channe l s	944m	South West

Native Vegetation of the Sydney Metropolitan Area : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

277 The Grand Parade, Ramsgate, NSW 2217

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

277 The Grand Parade, Ramsgate, NSW 2217

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

277 The Grand Parade, Ramsgate, NSW 2217

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Anima l ia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Anima l ia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anous stolidus	Common Noddy	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Anima l ia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Anima l ia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Anima l ia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Anima l ia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Anima l ia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswa ll ow	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Anima l ia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calamanthus fuliginosus	Striated Fieldwren	Endangered	Not Sensitive	Not Listed	
Anima l ia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Calidris alba	Sanderling	Vulnerable	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Anima l ia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	Rokamba;camba; Jamba
Anima l ia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Anima l ia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Calidris subminuta	Long-toed Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	Rokamba;camba; Jamba
Anima l ia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus banksii banksii	Red-tailed Black- Cockatoo (coastal subspecies)	Critically Endangered	Category 2	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Anima l ia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Anima l ia	Aves	Calyptorhynchus Iathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Anima l ia	Aves	Certhionyx variegatus	Pied Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Charadrius leschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Charadrius mongolus	Lesser Sand- plover	Vulnerable	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Cuculus optatus	Oriental Cuckoo	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Dasyornis brachypterus	Eastern Bristlebird	Endangered	Category 2	Endangered	
Animalia	Aves	Diomedea exu l ans	Wandering Albatross	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Anima l ia	Aves	Epthianura albifrons	White-fronted Chat	Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Esacus magnirostris	Beach Stone- curlew	Critically Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Anima l ia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	CAMBA
Anima l ia	Aves	Glossopsitta porphyrocephala	Purple-crowned Lorikeet	Vulnerable	Category 3	Not Listed	
Anima l ia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Gygis a l ba	White Tern	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus Iongirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Anima l ia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Halobaena caerulea	Blue Petrel	Not Listed	Not Sensitive	Vulnerable	
Anima l ia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Anima l ia	Aves	Ixobrychus	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola falcine l us	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica baueri	Bar-tailed Godwit (baueri)	Not Listed	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Anima l ia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Lophochroa leadbeateri	Major Mitche l 's Cockatoo	Vulnerable	Category 2	Not Listed	
Anima l ia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Anima l ia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Manorina melanotis	Black-eared Miner	Critically Endangered	Not Sensitive	Endangered	
Animalia	Aves	Motacilla flava	Yellow Wagtail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Neochmia ruficauda	Star Finch	Presumed Extinct	Not Sensitive	Endangered	
Anima l ia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Anima l ia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Anima l ia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Oceanites oceanicus	Wilson's Storm- Petrel	Not Listed	Not Sensitive	Not Listed	JAMBA
Anima l ia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Petroica rodinogaster	Pink Robin	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Philomachus pugnax	Ruff	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Anima l ia	Aves	Procelsterna	Grey Ternlet	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Pterodroma leucoptera leucoptera	Gould's Petrel	Vulnerable	Not Sensitive	Endangered	
Animalia	Aves	Pterodroma neglecta neglecta	Kermadec Petrel (west Pacific subspecies)	Vulnerable	Not Sensitive	Vulnerable	
Anima l ia	Aves	Pterodroma nigripennis	Black-winged Petrel	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Puffinus assimilis	Little Shearwater	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stercorarius pomarinus	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Sternula nereis nereis	Fairy Tern	Not Listed	Not Sensitive	Vulnerable	
Anima l ia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Aves	Sula leucogaster	Brown Booby	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Thalassarche cauta	Shy Albatross	Vulnerable	Not Sensitive	Vulnerable	
Anima l ia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Anima l ia	Aves	Thinomis cucullatus cucullatus	Eastern Hooded Dotterel	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Tringa incana	Wandering Tattler	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Anima l ia	Aves	Tyto Iongimembris	Eastern Grass Owl	Vulnerable	Category 3	Not Listed	
Anima l ia	Aves	Tyto novaeho ll andiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Wha l e	Endangered	Not Sensitive	Endangered	
Anima l ia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Anima l ia	Mammalia	Micronomus norfo l kensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Mammalia	Perameles nasuta	Long-nosed Bandicoot	Endangered Population	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Anima l ia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Anima l ia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Anima l ia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Anima l ia	Reptilia	Eretmochelys imbricata	Hawksbill Turtle	Not Listed	Not Sensitive	Vulnerable	
Anima l ia	Reptilia	Eulamprus leuraensis	Blue Mountains Water Skink	Endangered	Not Sensitive	Endangered	
Anima l ia	Reptilia	Hoplocephalus bungaroides	Broad-headed Snake	Endangered	Category 2	Vulnerable	
Anima l ia	Reptilia	Hoplocephalus stephensii	Stephens' Banded Snake	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Reptilia	Suta flagellum	Little Whip Snake	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Anima l ia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia prominens	Gosford Wattle	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia terminalis subsp. Eastern Sydney	Sunshine wattle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Allocasuarina diminuta subsp. mimica		Endangered Population	Not Sensitive	Not Listed	
P l antae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Chamaesyce psammogeton	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Doryanthes palmeri	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Endiandra hayesii	Rusty Rose Walnut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
P l antae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Leucopogon exolasius	Woronora Beard- heath	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
P l antae	Flora	Maundia triglochinoides		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Prostanthera densa	Villous Mint-bush	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Pterostylis sp. Botany Bay	Botany Bay Bearded Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea aristata	Prickly Bush-pea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thelymitra atronitida	Black-hooded Sun Orchid	Critically Endangered	Category 2	Not Listed	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Tinospora tinosporoides	Arrow-head Vine	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Wilsonia backhousei	Narrow-leafed Wilsonia	Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: G State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Land Title Records

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

Address: Thomastown

Description: - Lots 6 to 11 D.P. 11037, Lot 8 Section D D.P. 10747 & Lot 55 D.P. 613007

As regards Lot 6 D.P. 11037

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.04.1926 (1926 to 1926)	William James Court (Clerk)	Vol 3848 Fol 156
01.04.1926 (1926 to 1926)	Amelia Alice Court (Widow)	Vol 3848 Fol 156
21.07.1926 (1926 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3848 Fol 156
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3848 Fol 156
17.08.1970 (1970 to	G.J. Coles & Coy Liimited	Vol 3848 Fol 156 Now 6/11037
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	6/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	6/11037

Denotes Current Registered Proprietor

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 7 D.P. 11037

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
04.03.1925 (1925 to 1958	Arthur Ashley Pemberton (Manufacturer)	Vol 3702 Fol 16
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3702 Fol 16
17.08.1970 (1970 to	G.J. Coles & Coy Liimited	Vol 3702 Fol 16 Now 7/11037
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	7/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	7/11037

<u># Denotes Current Registered Proprietor</u>

Leases, excluding shop premises: -

- 26.05.1983 to Sydney County Council, of Substation premises <u>No. 559</u>. Together with a Right of Way and Easement for Electricity purposes expires 31.12.2010.
- 24.01.1996 (O 862674) expired, not investigated.
- 10.07.2012 (AG 931159) to Ausgrid, of Substation premises <u>No. 10559</u>, See also D.P. 1163168. Together with a Right of Way and Easement for Electricity purposes expires 31.12.2040, also 25 year option.
 - o Lessee now Alpha Distribution Ministerial Holding Corporation
 - 28.02.2017 (AK 971351) Lease of Lease to Blue Asset Partner Pty Ltd, Eric Alpha Asset Corporation 1 Pty Ltd, Eric Alpha Asset Corporation 2 Pty Ltd, Eric Alpha Asset Corporation 3 Pty Ltd Eric Alpha Asset Corporation 4 Pty Ltd
 - 28.02.2017 (AK 971352) Sub Lease to Blue Op Partner Pty Ltd, Eric Alpha Operator Corporation 1 Pty Ltd, Eric Alpha Operator Corporation 2 Pty Ltd, Eric Alpha Operator Corporation 3 Pty Ltd Eric Alpha Operator Corporation 4 Pty Ltd
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 8 D.P. 11037

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
22.10.1923 (1923 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3531 Fol 64
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3531 Fol 64
17.08.1970 (1970 to	G.J. Coles & Coy Liimited	Vol 3531 Fol 64 Now 8/11037
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	8/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	8/11037

Denotes Current Registered Proprietor

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: -

- 26.05.1983 Right of Way and Easement for Electricity purposes expires 31.12.2010.
- 10.07.2012 (AG 931159) See also D.P. 1163168. Right of Way and Easement for Electricity purposes expires 31.12.2040 (?also 25 year option.)
- 10.07.2012 (AG 931159) See also D.P. 1163168. Right of Way expires 31.12.2040 (?also 25 year option.)

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
27.08.1915 (1915 to 1920)	Elsie Lane (Spinster) Thomas Edgar Lane (Mechanic)	Vol 458 Fol 163
27.10.1920 (1920 to 1923)	Cletus Joseph Egan (Carpenter)	Vol 458 Fol 163
27.08.1923 (1923 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 458 Fol 163 Now Vol 3508 Fol 75
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3508 Fol 75
17.08.1970 (1970 to 1991)	G.J. Coles & Coy Limited Now Cock Myer Ltd	Vol 3508 Fol 75 Now 9/11037
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	9/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	9/11037

As regards Lot 9 D.P. 11037

Denotes current registered proprietor

Email: mark.groll@infotrack.com.au

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

As regards Lot 10 D.P. 11037

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
16.05.1923 (1923 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3453 Fol 237
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3453 Fol 237
17.08.1970 (1970 to 1991)	G.J. Coles & Coy Limited Now Cock Myer Ltd	Vol 3453 Fol 237
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	Vol 3453 Fol 237 Now 10/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	10/11037

Denotes Current Registered Proprietor

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

As regards Lot 11 D.P. 11037

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
16.05.1923 (1923 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3453 Fol 236
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3453 Fol 236
17.08.1970 (1970 to 1991)	G.J. Coles & Coy Limited Now Cock Myer Ltd	Vol 3453 Fol 236
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	Vol 3453 Fol 236 Now 11/11037
24.01.1996 (1996 to date)	# Moside Pty Limited	11/11037

Denotes Current Registered Proprietor

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
01.11.1924 (1924 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3669 Fol 247
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3669 Fol 247
17.08.1970 (1970 to 1991)	G.J. Coles & Coy Limited Now Cock Myer Ltd	Vol 3669 Fol 247 Now 8/D/10747
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	8/D/10747
24.01.1996 (1996 to date)	# Moside Pty Limited	8/D/10747

As regards Lot 8 Section D D.P. 10747

Denotes Current Registered Proprietor

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

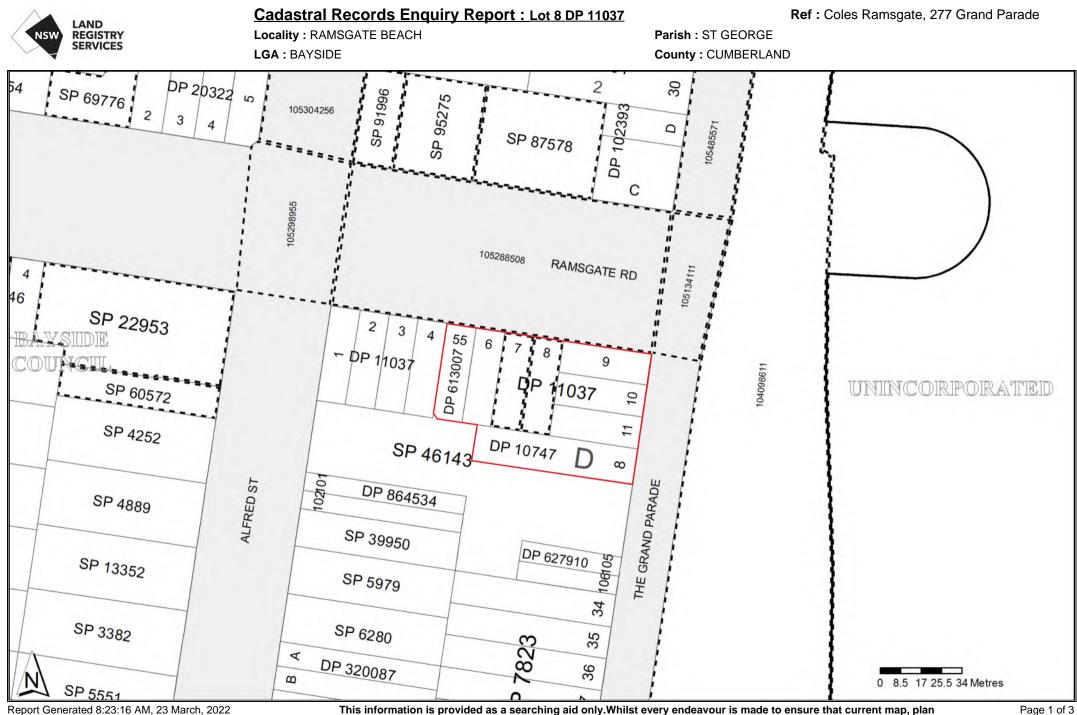
Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

As regards Lot 55 D.P. 613007

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
08.04.1926 (1926 to 1927)	Albert William Allen (Packer)	Vol 3848 Fol 157
24.02.1927 (1927 to 1958)	Arthur Ashley Pemberton (Manufacturer)	Vol 3848 Fol 157
11.02.1958 (1958 to 1970)	Pemberton Investments Pty Limited	Vol 3848 Fol 157
17.08.1970 (1970 to 1991)	G.J. Coles & Coy Limited Now Cock Myer Ltd	Vol 3848 Fol 157 Then Vol 14309 Fol 52 Now 55/613007
17.05.1991 (1991 to 1996)	Barkly Square Shopping Centre Pty Limited	55/613007
24.01.1996 (1996 to date)	# Moside Pty Limited	55/613007


Denotes Current Registered Proprietor

Leases, excluding shop premises: -

- 24.01.1996 (O 862674) expired, not investigated.
- 20.03.2021 (AQ 884251) to Coles Supermarkets Australia Pty Ltd, of Coles Supermarket expires 30.06.2023, also 2 x 5 year options.

Easements: - NIL

Yours Sincerely Mark Groll 23 March 2022

Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 3

Disclaimer: This report has been generated by various sources and is provided for information purposes only. Spatial Services does not warrant or represent that the information is free from errors or omission, or that it is exhaustive. Spatial Services gives no warranty in relation to the information, especially material supplied by third parties. Spatial Services accepts no liability for loss, damage, or costs that you may incur relating to any use or reliance upon the information in this report.

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

SEARCH DATE

_____ 22/3/2022 6:15PM

FOLIO: 6/11037

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3848 FOL 156

Recorded	Number	Type of Inst	rument	C.T. Issue
16/2/1989		TITLE AUTOMA	TION PROJECT	LOT RECORDED FOLIO NOT CREATED
20/7/1990		CONVERTED TO	COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER		EDITION 1
	0862673 0862674			EDITION 2
15/10/1998	5332606	VARIATION OF	LEASE	
31/8/2001	7900262	MORTGAGE		EDITION 3
15/7/2003	9790665	VARIATION OF	LEASE	
7/2/2014	AI360759	VARIATION OF	LEASE	
1/9/2018	AN678863	DEPARTMENTAL	DEALING	EDITION 4 CORD ISSUED
20/3/2021	AQ884251	LEASE		EDITION 5 CORD ISSUED

*** END OF SEARCH ***

	STAMP DUTY		· ·	1997 - 19			493	893
					I IIII IIIIIII IIIIIIIIIIIIIIIIIIIIIII	i i i i i i i i i i i i i i i i i i i 		1997) 1997) 1997)
	156		-	5	ee An	nexure	o Ato	G-
		TRANSFER			AR	/01 /		
	ħ	REAL PROPERTY ACT, 19	900	Т	CN	11	₽ ~~~~	
·	Aquis.				\$	41	Ĺ	
	Correns Title Reference	If Part Only, Delete W		e Details		Locat	ion	
DESCRIPTION DF LAND Note (a)	Sec Annexure "A"	WH	IOLE		See	Annexu	re "A"	
(RANSFEROR Note (b)	COLES MYER LTD (former originally called G.J.	cly G.J. Coles & C . Coles & Coy. Pro	loy. Lin oprietar	nited a cy Limi	ind tod).			
	(the abovenamed TRANSFEROR) hereby acknown and transfers an estate in fee simple as in the land above described to the TRANSFERI	part of a company red		ion				
RANSFEREE Note (d)	BARKLY SQUARE SHOPPING Victoria, 3146	GENTRE PTY LTD C	э£ 800 т	loorak	Road, '	l'ooronge	See	
ENANCY ole (e)	as joint tenants/tenants in common				•.•		Annexi H to C	7
NCUMBRANCES	subject to the following PRIOR ENCUMBRANC	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • •					
NCUMBRANCES	DATE 8 DECEMBER	1996	3					
NCUMBRANCES ote (I)	2. DATE 8 DECEMBER We hereby certify this dealing to be correct for	Les 1 াপিৰত the purposes of the Real Property	3					
PRIOR NCUMBRANCES Note (f) XECUTION Note (g)	DATE 8 DECEMBER	the purposes of the Real Property s personally known to me THE COMMON S COLES MYER L	3 Act, 1900. <u>EAL</u> of <u>TD</u> was					
NCUMBRANCES lote (I) XECUTION	2. DATE S DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is	the purposes of the Real Property s personally known to me THE COMMON S	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in					
NCUMBRANCES lote (I)	2 DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS)	the purposes of the Real Property s personally known to me THE COMMON S COLES MYER L hereunto aff	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in					
NCUMBRANCES lote (I)	2. DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signalure of Witness	the purposes of the Real Property s personally known to me THE COMMON S COLES MYER L hereunto aff presence of:	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in			Signature of Trans	lerof	
NCUMBRANCES lote (I) XECUTION lote (g)	2 DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS)	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of:	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in			Signature of Transi	leror A	·····
NCUMBRANCES lote (I)	2. DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of:	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in			Signature of Trans	leror >	
NCUMBRANCES lote (I) XECUTION lote (g)	2 DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signed in my presence by the transferee who is Signed in my presence by the transferee who is	the purposes of the Real Property s personally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary s personally known to me	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in			Signature of Transi	leror A	
NCUMBRANCES lote (I) XECUTION lote (g)	2. DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Name of Wilness (BLOCK LETTERS) Address and occupation of Wilness Signed in my presence by the transferee who is	the purposes of the Real Property spersonally known to me <u>COLES MYER L</u> hereunto aff presence of: spersonally known to me	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in			Signature of Trans	lerov	
NCUMBRANCES lote (I) XECUTION lote (g)	2 DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signed in my presence by the transferee who is Signed in my presence by the transferee who is	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director	3 Act, 1900. <u>EAL</u> of <u>TD</u> was ixed in	the BR		Signalure of Transi ADYEN		
NCUMBRANCES lote (I) XECUTION lote (g)	2. DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signed in my presence by the transferee who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness LODGED BY FREEHILL, HOLL, II	the purposes of the Real Property s personally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary s personally known to me Director	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC	AN McF	Signalure of Transi ADYEN	orec	·····
NCUMBRANCES lote (I) XECUTION lote (g)	2. DATE <u>B</u> DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC LO	AN MCF	Signalure of Transi ADYEN SYDNEY	orec	
NCUMBRANCES lote (I) XECUTION lote (g) lote (g) 0 BE COMPLETED Y LODGING PARTY otes (h)	2 DATE S DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signed in my presence by the transferee who is Signed in my presence by the transferee who is Signed in my presence by the transferee who is Name of Witness (BLOCK LETTERS) Address and occupation of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness LODGED BY FREEHILL, HOLLTI Level 30, MLC Ce 19–29 Martin Ple SYDNEY HSW 2014	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director NGDALE & PAGE entre ace 00	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC LO	AN McF LICITOR, S CATION OF I Herewith.	Signalure of Transi ADYEN SYDNEY DOCUMENTS	orec	
NCUMBRANCES lote (I) XECUTION lote (g) lote (g) 0 BE COMPLETED Y LODGING PARTY otes (h)	2 DATE S DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Name of Winess (BLOCK LETTERS) Address and occupation of Winess Signed in my presence by the transferee who is Signed in my presence by the transferee who is Signed in my presence by the transferee who is Name of Witness (BLOCK LETTERS) Address and occupation of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness LODGED BY FREEHILL, HOLLTI Level 30, MLC CO 19–29 Martin Plo SYDNEY HSW 200 Phone: 225 5000 BJMCF: COL900750	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director Director	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC LO	AN MCF	Signalure of Transi ADYEN SYDNEY DOCUMENTS	orec	
NCUMBRANCES lote (I) EXECUTION lote (g) lote (g) O BE COMPLETED Y LODGING PARTY otes (h) nd (i)	2 DATE S DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness Signed in my presence by the transferee who is Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness LODGED BY FREEHILL, HOLLITI Level 30, MLC Co 19–29 Martin Pla SYDNEY HSW 200 Phone: 225 5000 BJMcF: COL900750	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director Director	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC LO	AN McF LICITOR, S CATION OF I Herewith.	Signalure of Transi ADYEN SYDNEY DOCUMENTS	orec	
NCUMBRANCES lote (I) XECUTION lote (g) lote (g) 0 BE COMPLETED Y LODGING PARTY otes (h)	2. DATE S DECEMBER We hereby certify this dealing to be correct for Signed in my presence by the transferor who is Name of Winess (BLOCK LETTERS) Address ind occupation of Winess Signed in my presence by the transferee who is Signed in my presence by the transferee who is Signed in my presence by the transferee who is Signed in my presence by the transferee who is Name of Witness Name of Witness Name of Witness LODGED BY FREEHILL, HOLLITI Level 30, MLC Co 19–29 Martin Pla SYDNEY HSW 2010 Phone: 225 5000 BJMCF: COL901755 Ref: 2770 - 76	the purposes of the Real Property spersonally known to me THE COMMON S COLES MYER L hereunto aff presence of: Secretary spersonally known to me Director Director	3 Act, 1900. EAT, of <u>TD</u> was ixed in	the BRI SC LO	AN McF DLICITOR, S CATION OF I Herewith. In L.T.O. w	Signalure of Transi ADYEN SYDNEY DOCUMENTS	orec	

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 6/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	5	20/3/2021

LAND

LOT 6 IN DEPOSITED PLAN 11037 LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED
- 3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE _____ 22/3/2022 6:15PM

FOLIO: 7/11037

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3702 FOL 16

Recorded	Number	Type of Instrument	C.T. Issue
16/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
5/7/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER	EDITION 1
24/1/1996 24/1/1996	0862673 0862674	TRANSFER LEASE	EDITION 2
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 3
15/7/2003	9790665	VARIATION OF LEASE	
30/3/2011	DP1163168	DEPOSITED PLAN	
10/7/2012	AG931159	LEASE	EDITION 4
7/2/2014	AI360759	VARIATION OF LEASE	
	AK971352 AK971502 AK971571		
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 5 CORD ISSUED
20/3/2021	AQ884251	LEASE	EDITION 6 CORD ISSUED

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 7/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	б	20/3/2021

LAND

4

LOT 7 IN DEPOSITED PLAN 11037 LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED
- 3 AG931159 LEASE TO AUSGRID OF SUBSTATION NO 10559 TOGETHER WITH A RIGHT OF WAY AND EASEMENT FOR ELECTRICITY PURPOSES AFFECTING THE PART DESIGNATED (C1) IN DP1163168. EXPIRES: 31/12/2040. OPTION OF RENEWAL: 25 YEARS.
 - AK971351 LEASE OF LEASE AG931159 TO BLUE ASSET PARTNER PTY LTD, ERIC ALPHA ASSET CORPORATION 1 PTY LTD, ERIC ALPHA ASSET CORPORATION 2 PTY LTD, ERIC ALPHA ASSET CORPORATION 3 PTY LTD & ERIC ALPHA ASSET CORPORATION 4 PTY LTD EXPIRES: SEE DEALING. CLAUSE 2.3 (b) (ii).
 - AK971352 LEASE OF LEASE AK971351 TO BLUE OP PARTNER PTY LTD, ERIC ALPHA OPERATOR CORPORATION 1 PTY LTD, ERIC ALPHA OPERATOR CORPORATION 2 PTY LTD, ERIC ALPHA OPERATOR CORPORATION 3 PTY LTD & ERIC ALPHA OPERATOR CORPORATION 4 PTY LTD EXPIRES: SEE
 - DEALING. CLAUSE 12.1 AK971502 MORTGAGE OF LEASE AK971351 TO ANZ FIDUCIARY SERVICES PTY LTD AK971571 CHANGE OF NAME AFFECTING LEASE AG931159 LESSEE NOW ALPHA DISTRIBUTION MINISTERIAL HOLDING CORPORATION AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF
- COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

END OF PAGE 1 - CONTINUED OVER

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 7/11037

PAGE 2

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright © Office of the Registrar-General 2022

Received: 22/03/2022 18:14:37

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/3/2022 6:15PM

FOLIO: 8/11037

_ _ _ _ _

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3531 FOL 64

Recorded	Number	Type of Instrument	C.T. Issue
18/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/11/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER	EDITION 1
	0862673 0862674		EDITION 2
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 3
15/7/2003	9790665	VARIATION OF LEASE	
30/3/2011	DP1163168	DEPOSITED PLAN	
10/7/2012	AG931159	LEASE	EDITION 4
7/2/2014	AI360759	VARIATION OF LEASE	
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 5 CORD ISSUED
15/9/2020	AP912711	DEPARTMENTAL DEALING	
20/3/2021	AQ884251	LEASE	EDITION 6 CORD ISSUED

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 8/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	6	20/3/2021

LAND

LOT 8 IN DEPOSITED PLAN 11037 AT RAMSGATE BEACH LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (5 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

FURTHER OPTION OF 5 YEARS.

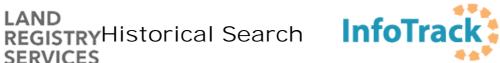
2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED

3	AG931159	RIGHT OF WAY AND EASEMENT FOR ELECTRICITY PURPOSES
		AFFECTING THE SITE DESIGNATED (C1) IN DP1163168.
		EXPIRES 31/12/2040
4	AG931159	RIGHT OF WAY AFFECTING THE SITE DESIGNATED (R1) IN
		DP1163168. EXPIRES 31/12/2040
5	AQ884251	LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF
		COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE.
		EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***


Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/3/2022 6:15PM

FOLIO: 9/11037

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3508 FOL 75

Recorded	Number	Type of Instr	rument	C.T. Issue
18/2/1989		TITLE AUTOMAT	TION PROJECT	LOT RECORDED FOLIO NOT CREATED
25/9/1989		CONVERTED TO	COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER		EDITION 1
24/1/1996 24/1/1996	0862673 0862674	TRANSFER LEASE		EDITION 2
15/10/1998	5332606	VARIATION OF	LEASE	
31/8/2001	7900262	MORTGAGE		EDITION 3
15/7/2003	9790665	VARIATION OF	LEASE	
7/2/2014	AI360759	VARIATION OF	LEASE	
1/9/2018	AN678863	DEPARTMENTAL	DEALING	EDITION 4 CORD ISSUED
20/3/2021	AQ884251	LEASE		EDITION 5 CORD ISSUED

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 9/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	5	20/3/2021

LAND

LOT 9 IN DEPOSITED PLAN 11037 LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED

3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____

22/3/2022 6:15PM

FOLIO: 10/11037

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3453 FOL 237

Recorded	Number	Type of Instrument	C.T. Issue
18/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
31/12/1993		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
24/1/1996 24/1/1996	0862673 0862674	TRANSFER LEASE	EDITION 1
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 2
15/7/2003	9790665	VARIATION OF LEASE	
7/2/2014	AI360759	VARIATION OF LEASE	
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 3 CORD ISSUED
20/3/2021	AQ884251	LEASE	EDITION 4 CORD ISSUED

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 10/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	4	20/3/2021

LAND

LOT 10 IN DEPOSITED PLAN 11037 LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED

3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/3/2022 6:15PM

FOLIO: 11/11037

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3453 FOL 236

Recorded	Number	Type of Instrument	C.T. Issue
18/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
31/12/1993		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
	0862673 0862674	TRANSFER LEASE	EDITION 1
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 2
15/7/2003	9790665	VARIATION OF LEASE	
7/2/2014	AI360759	VARIATION OF LEASE	
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 3 CORD ISSUED
15/9/2020	AP912711	DEPARTMENTAL DEALING	
20/3/2021	AQ884251	LEASE	EDITION 4 CORD ISSUED

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 11/11037

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	4	20/3/2021

LAND

- ____
- LOT 11 IN DEPOSITED PLAN 11037 AT RAMSGATE BEACH LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP11037

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

- -----
- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED
- 3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

LAND

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____

22/3/2022 6:15PM

FOLIO: 8/D/10747

_ _ _ _ _ _ _

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3669 FOL 247

Recorded	Number	Type of Instrument	C.T. Issue
17/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
3/7/1990		CONVERTED TO COMPUTER FOLI	O FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER	EDITION 1
24/1/1996 24/1/1996	0862673 0862674	TRANSFER LEASE	EDITION 2
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 3
15/7/2003	9790665	VARIATION OF LEASE	
7/2/2014	AI360759	VARIATION OF LEASE	
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 4 CORD ISSUED
20/3/2021	AQ884251	LEASE	EDITION 5 CORD ISSUED

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 8/D/10747

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	5	20/3/2021

LAND

LOT 8 OF SECTION D IN DEPOSITED PLAN 10747 LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP10747

FIRST SCHEDULE

MOSIDE PTY. LIMITED

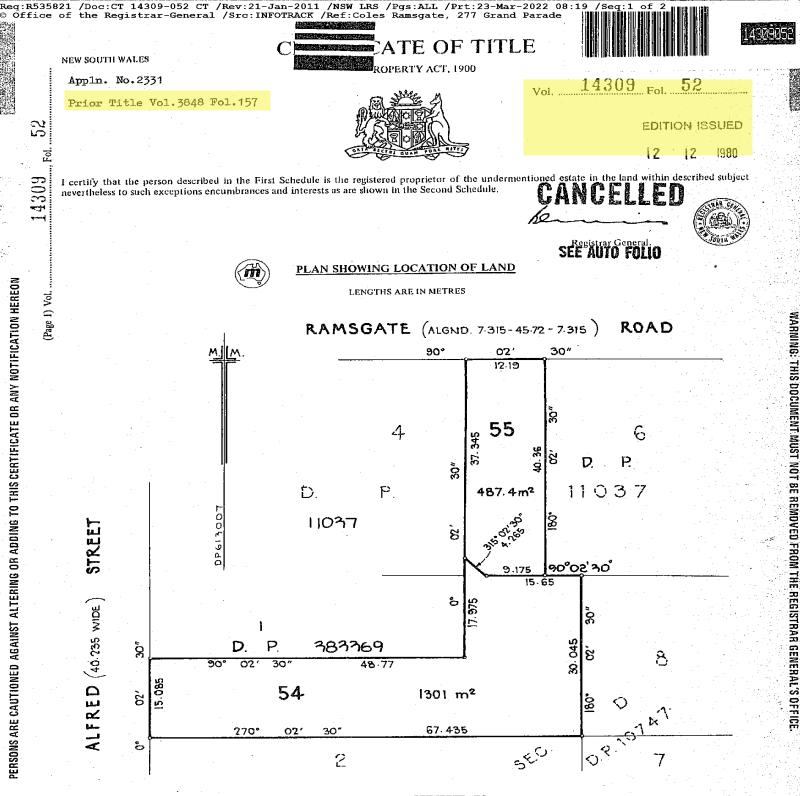
(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED

3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS


UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

PRINTED ON 22/3/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 55 in Deposited Plan 613007 at Ramsgate in the Municipality of Rockdale Parish of St.George and County of Cumberland being part of Portion 42 granted to George Alfred Lloyd on 23-2-1854.

FIRST SCHEDULE

G. J. COLES & COY. LIMITED.

CRY

RG 2/64

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to.

	FIRST SCHEDULE (continued)	<u> </u>	·		
· [REGISTERED PROPRIETOR	INSTRUM NATURE	NUMBER	REGISTERED	Signature of Registrar General
52		MATURE	HOMDER		
₩ <i>₽</i>					
Fol.					
			· · · ·		
309					
₹					
	CANCELLED				
Vol.					
· [SEE AUTO FOLIO				
ſ					

Req:R535821 © Office of

the

FOTR

/NSW

and.

ATION
1
<u> </u> .

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

र्म्स् अ

'n.

LAND

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

SEARCH DATE

_____ 22/3/2022 6:15PM

FOLIO: 55/613007

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 14309 FOL 52

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/9/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
17/5/1991	Z493893	TRANSFER	EDITION 1
24/1/1996 24/1/1996	0862673 0862674	TRANSFER LEASE	EDITION 2
15/10/1998	5332606	VARIATION OF LEASE	
31/8/2001	7900262	MORTGAGE	EDITION 3
15/7/2003	9790665	VARIATION OF LEASE	
7/2/2014	AI360759	VARIATION OF LEASE	
1/9/2018	AN678863	DEPARTMENTAL DEALING	EDITION 4 CORD ISSUED
20/3/2021	AQ884251	LEASE	EDITION 5 CORD ISSUED

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 55/613007

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/3/2022	6:14 PM	5	20/3/2021

LAND

LOT 55 IN DEPOSITED PLAN 613007 AT RAMSGATE LOCAL GOVERNMENT AREA BAYSIDE PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP613007

FIRST SCHEDULE

MOSIDE PTY. LIMITED

(T 0862673)

SECOND SCHEDULE (3 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 7900262 MORTGAGE TO AUSTRALIA AND NEW ZEALAND BANKING GROUP LIMITED

3 AQ884251 LEASE TO COLES SUPERMARKETS AUSTRALIA PTY LTD OF COLES SUPERMARKET, 277 THE GRAND PARADE, RAMSGATE. EXPIRES: 30/6/2023. OPTION OF RENEWAL: 5 YEARS AND ONE FURTHER OPTION OF 5 YEARS.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Coles Ramsgate, 277 Grand Parade

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Section 10.7 Certificates

8 March 2022

Our Ref: Certificate No. 66382 Contact: Customer Service 1300 581 299

JK Environments PO BOX 976 NORTH RYDE BC NSW 1670

Dear Sir/Madam

Following is your planning certificate issued under section 10.7 (2) and (5) of the Environmental Planning and Assessment Act 1979.

This Section 10.7 Certificate has been issued by Bayside Council. Information contained within this Certificate is based on data from Council's records as they existed at the date of this Certificate.

Should you have any enquiries, please contact the Council's Customer Service Centre on 1300 581 299.

SECTION 10.7 PLANNING CERTIFICATE

(under section 10.7 of the Environmental Planning and Assessment Act 1979)

ISSUED TO:

JK Environments PO BOX 976 NORTH RYDE BC NSW 1670

Council: Bayside County: Cumberland Parish: St George
 Fee:
 133.00

 Receipt No:
 4972429

 Receipt Date:
 2000

 Your Ref:
 E34871PT:59795

Bayside Council

Serving Our Community

PROPERTY: 277 THE GRAND PARADE, RAMSGATE BEACH NSW 2217

Lot 6 DP 11037, Lot 7 DP 11037, Lot 8 DP 11037, Lot 9 DP 11037, Lot 10 DP 11037, Lot 11 DP 11037, Lot 8 SecD DP 10747, Lot 55 DP 613007

СТ

Assessment No: 29117

Date: 8 March 2022

For Meredith Wallace General Manager

Rockdale Customer Service Centre 444-446 Princes Highway Rockdale NSW 2216, Australia ABN 80 690 785 443 Eastgardens Customer Service Centre Westfield Eastgardens 152 Bunnerong Road Eastgardens NSW 2036, Australia ABN 80 690 785 443

T 1300 581 299 | 02 9562 1666 E council@bayside.nsw.gov.au W www.bayside.nsw.gov.au Postal address: PO Box 21. Rockdale NSW 2216

This page is intentionally left blank

Notes: (1) Where this certificate refers to a specific allotment (or allotments) within a strata plan the certificate is issued for the whole of the land within the strata plan, not just the specific allotment or allotments referred to, and any information contained in the certificate may relate to the whole or any part of the strata plan.

1	Name	s of relevant planning instruments and o	development control plans
	(1)	The name of each environmental planning plan that applies to the carrying out of deve	
		Bayside Local Environmental Plan 2021	
		State Environmental Planning Policy No 65	Design Quality of Residential Apartment Development
		State Environmental Planning Policy	(Building Sustainability Index: BASIX) 2004
		State Environmental Planning Policy	(Exempt and Complying Development Codes) 2008
		State Environmental Planning Policy State Environmental Planning Policy Greater Metropolitan Regional Environmental (only applies to land within the Georges River Catc being, in the Bayside Council area, certain land with	hment, referred to in Clause 2 of the Plan,
		Sandringham and Sans Souci). Rockdale Development Control Plan 2011	
	(2)	The name of each proposed environmental development control plan, which is or has consultation or public exhibition under the of development on the land.	been subject to community
		No Planning Proposal applies to the land.	
		No draft Development Control Plan applies to	the land.
		Draft State Environmental Planning Policy – D	esign and Place
		For more information or to determine whether visit the Department of Planning and Environm www.planning.nsw.gov.au.	
	(3)	 Subsection (2) does not apply in relation to instrument or draft development control planation it has been more than 3 years since period for the proposed instrument b) for a proposed environmental planation Secretary has notified the council the instrument has been deferred indefinition. 	an if— the end of the public exhibition or draft plan, or ning instrument—the Planning hat the making of the proposed
	(4)	In this section—	

proposed environmental planning instrument means a draft environmental planning instrument and includes a planning proposal for a local environmental plan.

2 Zoning and land use under relevant planning instruments

The following matters for each environmental planning instrument or draft environmental planning instrument that includes the land in a zone, however described—

- 2(a) the identity of the zone, whether by reference to— (i) a name, such as "Residential Zone" or "Heritage Area", or
 - (i) a number, such as "Zone No 2 (a)",
- 2(b) the purposes for which development in the zone-
 - (i) may be carried out without development consent, and
 (ii) may not be carried out except with development consent, and
 (iii) is prohibited,

The following zone or zones apply under the environmental planning instrument or draft environmental planning instrument referred to in section 2:

Zone B4 Mixed Use

1 Objectives of zone

- To provide a mixture of compatible land uses.
- To integrate suitable business, office, residential, retail and other development in accessible locations so as to maximise public transport patronage and encourage walking and cycling.

2 Permitted without consent

Home-based child care; Home businesses; Home occupations

3 Permitted with consent

Artisan food and drink industries; Boarding houses; Centre-based child care facilities; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Exhibition homes; Function centres; Group Homes; Hostels; Hotel or motel accommodation; Information and education facilities; Medical centres; Oyster aquaculture; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Residential flat buildings; Respite day care centres; Restricted premises; Roads; Seniors housing; Shop top housing; Tank-based aquaculture; Waste or resource transfer stations; Any other development not specified in item 2 or 4

4 Prohibited

Advertising structures; Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Exhibition villages; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Heavy industrial storage establishments; Highway service centres; Home occupations (sex services); Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Open cut mining; Pond-based aquaculture; Port facilities; Recreation facilities (major); Research stations; Residential accommodation; Rural industries; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Warehouse or distribution centres; Waste or resource management facilities; Wharf or boating facilities; Wholesale supplies

2(c) whether any additional permitted uses apply to the land,

No additional permitted uses apply to the land.

2(d) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the fixed minimum land dimensions,

No development standards apply to the land that fixes minimum land dimensions for the erection of a dwelling house.

- **Note:** The above information does not imply that the erection of a dwelling-house is necessarily permissible on the land to which this certificate applies. Refer to the relevant local environmental plan, deemed environmental planning instrument or draft local environmental plan applying to the land to confirm this.
- 2(e) whether the land is in an area of outstanding biodiversity value under the *Biodiversity Conservation Act 2016*,

The land **is not** an area of outstanding biodiversity value.

2(g) whether the land is in a conservation area, however described,

The land **is not** in a conservation area.

2(h) whether an item of environmental heritage, however described, is situated on the land.

There is **no such item** situated on the land.

3 Contributions plans

(1) The name of each contributions plan under the Act, Division 7.1 applying to the land, including draft contributions plan

Rockdale Section 94A Development Contributions Plan 2008 Rockdale Section 94 Contributions Plan 2004

Note: If land is within the former Rockdale City local government area, the *Rockdale Section 94 Contributions Plan (Amendment No 4)* and *Rockdale Section 94 Contributions Plan 1998* will continue to apply to all development applications and applications for complying development certificates made prior to 1 June 2004.

(2) If the land is in a special contributions area under the Act, Division 7.1, the name of the area.

A Special Infrastructure Contributions Plan does not apply to the land.

4 Complying development

- (1) If the land is land on which complying development may be carried out under each of the complying development codes under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008*, because of that Policy, clause 1.17A(1)(c)–(e), (2), (3) or (4), 1.18(1)(c3) or 1.19.
- (2) If complying development may not be carried out on the land because of 1 of those clauses, the reasons why it may not be carried out under the clause
- (3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that—
 - (a) a restriction applies to the land, but it may not apply to all of the land, and
 - (b) the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.
- (4) If the complying development codes are varied, under that Policy, clause 1.12, in relation to the land.

Housing Code

Complying development may be carried out on the land under the above code.

Inland Code

Complying development **may be** carried out on the land under the above code.

Low Rise Housing Diversity Code

Complying development **may be** carried out on the land under the above code.

Rural Housing Code

Complying development **may be** carried out on the land under the above code.

Greenfield Housing Code

Complying development may be carried out on the land under the above code.

Commercial and Industrial (New Buildings and Additions) Code

Complying development may be carried out on the land under the above code.

Housing Alterations Code

Complying development **may be** carried out on the land under the above code.

General Development Code

Complying development may be carried out on the land under the above code.

Commercial and Industrial Alterations Code

Complying development **may be** carried out on the land under the above code.

Container Recycling Facilities Code

Complying development may be carried out on the land under the above code.

Subdivisions Code

Complying development **may be** carried out on the land under the above code.

Demolition Code

Complying development **may be** carried out on the land under the above code.

Fire Safety Code

Complying development may be carried out on the land under the above code.

Notes:

(1) If a reference is made to "part of the land", Complying Development **may be** carried out on the portion of the land not subject to such a restriction.

(2) This certificate only addresses matters raised in Clause 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1)(c3) and 1.19 of *State Environmental Planning Policy (Exempt and Complying Development Codes)* 2008. It is your responsibility to ensure that you comply with any other general requirements of the *State Environmental Planning Policy (Exempt and Complying Development Codes)* 2008.

5 Exempt development

- (1) If the land is land on which exempt development may be carried out under each of the exempt development codes under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008*, because of that Policy, clause 1.16(1)(b1)–(d) or 1.16A.
- (2) If exempt development may not be carried out on the land because of 1 of those clauses, the reasons why it may not be carried out under the clause.
- (3) If the council does not have sufficient information to ascertain the extent to which exempt development may or may not be carried out on the land, a statement that—
 - (a) a restriction applies to the land, but it may not apply to all of the land, and
 - (b) the council does not have sufficient information to ascertain the extent to which exempt development may or may not be carried out on the land.
- (4) If the exempt development codes are varied, under that Policy, clause 1.12, in relation to the land.

General Exempt Development Code

Exempt development may be carried out on the land under the above code.

Advertising and Signage Exempt Development Code

Exempt development may be carried out on the land under the above code.

Temporary Uses and Structures Exempt Development Code

Exempt development **may be** carried out on the land under the above code.

6 Affected building notices and building product rectification orders

- (1) Whether the council is aware that
 - a) an affected building notice is in force in relation to the land, or
 - b) a building product rectification order is in force in relation to the land that has not been fully complied with, or
 - c) a notice of intention to make a building product rectification order given in relation to the land is outstanding.
- (2) In this section—

affected building notice has the same meaning as in the Building Products (Safety) Act 2017, Part 4. building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Council **is not aware of an issue** of a notice of intention or order pertaining to building product rectification works (Building Products Safety Act 2017).

7 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in section 1 makes provision in relation to the acquisition of the land by an authority of the State, as referred to in section 3.15.

The land **is not affected** by any provision in an environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument that provides for the acquisition of the land by a public authority, as referred to in section 3.15 of the Act.

8 Road widening and road realignment

Whether or not the land is affected by any road widening or road realignment under:

(a) The Roads Act 1993, Part 3, Division 2, or

The land **is not affected by** any road widening or road realignment under Division 2 of Part 3 of the *Roads Act 1993.*

(b) Any environmental planning instrument, or

The land **is not affected by** any road widening or road realignment under any environmental planning instrument.

(c) Any resolution of the council

The land **is not affected by** any road widening or road realignment under any resolution of the Council.

9 Flood related development controls

(1) If the land or part of the land is within the flood planning area and subject to flood related development controls.

- **Yes** Bayside Local Environmental Plan 2021 applies to the land.
- Yes Rockdale Development Control Plan 2011 applies to the land.

(2) If the land or part of the land is between the flood planning area and the probable maximum flood and subject to flood related development controls.

- **Yes** Bayside Local Environmental Plan 2021 applies to the land.
- Yes Rockdale Development Control Plan 2011 applies to the land.

Note: (1) Further information relating to flooding is provided in the "Advice under Section 10.7 (5)" attached.

Note:

 (1) The answers above do not imply that the development referred to is necessarily permissible on the land to which this certificate applies. Refer to the relevant local environmental plan, deemed environmental planning instrument or draft local environmental plan applying to the land to confirm this.
 (2) Council is not in a position to identify whether the information provided under section 9 relates to a current or future hazard as defined in Planning Circular PS 14-003.

(3) In this section—

flood planning area has the same meaning as in the Floodplain Development Manual.

Floodplain Development Manual means the Floodplain Development Manual (ISBN 0 7347 5476 0) published by the NSW Government in April 2005. *probable maximum flood* has the same meaning as in the Floodplain Development Manual.

10 Council and other public authority policies on hazard risk restrictions

(1) Whether any of the land is affected by an adopted policy that restricts the development of the land because of the likelihood of land slip, bush fire, tidal inundation, subsidence, acid sulfate soils, contamination, aircraft noise, salinity, coastal hazards, sea level rise or another risk, other than flooding.

(2) In this section—

adopted policy means a policy adopted-

- (a) by the council, or
- (b) by another public authority, if the public authority has notified the council that the policy will be included in a planning certificate issued by the council.

Contaminated Land Policy

Former City of Rockdale Council adopted by resolution a policy on contaminated land that may restrict the development of the land. This policy does not specifically identify the subject land (or any other land) as contaminated. The policy does, however, apply to all land in the former City of Rockdale. This policy is implemented when zoning or land use changes are proposed on lands that have previously been used for certain purposes. Consideration of the Council's adopted policy and the application of provisions under relevant State legislation is warranted.

Clause 6.1 of the Bayside Local Environmental Plan 2021 - Acid Sulfate Soils

11 Bush fire prone land

(1) If any of the land is bush fire prone land, designated by the Commissioner of the NSW Rural Fire Service under the Act, section 10.3, a statement that all or some of the land is bush fire prone land.

(2) If none of the land is bush fire prone land, a statement to that effect.

The land **is not** bush fire prone land.

12 Loose-fill asbestos insulation

If the land includes residential premises, within the meaning of the *Home Building Act 1989*, Part 8, Division 1A, that are listed on the Register kept under that Division, a statement to that effect.

The land **is not** so listed.

13 Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning *Coal Mine Subsidence Compensation Act 2017*.

The land **is not** so proclaimed.

14 Paper subdivision information

- (1) The name of a development plan adopted by a relevant authority that or that –

 (a) applies to the land, or
 - (b) is proposed to be subject to a ballot.
- (2) The date of a subdivision order that applies to the land.
- (3) Words and expressions used in this section have the same meaning as in this Regulation, Part 10 and the Act, Schedule 7.

The land **is not** so affected.

15 **Property vegetation plans**

If the land is land in relation to which a property vegetation plan is approved and in force under the *Native Vegetation Act 2003*, Part 4, a statement to that effect, but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act.

The land **is not** land to which a property vegetation plan applies.

16 Biodiversity stewardship sites

If the land is a biodiversity stewardship site under a biodiversity stewardship agreement under the Biodiversity Conservation Act 2016, Part 5, a statement to that effect, but only if the council has been notified of the existence of the agreement by the Biodiversity Conservation Trust.

Note— Biodiversity stewardship agreements include biobanking agreements under the Threatened Species Conservation Act 1995, Part 7A that are taken to be biodiversity stewardship agreements under the Biodiversity Conservation Act 2016, Part 5.

The land **is not** subject to any such agreement.

17 Biodiversity certified land

If the land is biodiversity certified land under the Biodiversity Conservation Act 2016, Part 8, a statement to that effect.

Note— Biodiversity certified land includes land certified under the Threatened Species Conservation Act 1995, Part 7AA that is taken to be certified under the Biodiversity Conservation Act 2016, Part 8.

The land **is not** biodiversity certified land.

18 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land, but only if the council has been notified of the order.

The land **is not** subject to such an order.

19 Annual charges under *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works

(1) If the *Coastal Management Act 2016* applies to the council, whether the owner, or a previous owner, of the land has given written consent to the land being subject to annual charges under the Local Government Act 1993, section 496B, for coastal protection services that relate to existing coastal protection works.

(2) In this section existing coastal protection works has the same meaning as in the Local Government Act 1993, section 553B.

Note— Existing coastal protection works are works to reduce the impact of coastal hazards on land, such as seawalls, revetments, groynes and beach nourishment, that existed before 1 January 2011.

The land **is not** subject to annual charges.

20 State Environmental Planning Policy (Western Sydney Aerotropolis) 2020

Whether under State Environmental Planning Policy (Western Sydney Aerotropolis) 2020 the land is—

- (a) in an ANEF or ANEC contour of 20 or greater, as referred to in that Policy, clause 19, or
- (b) shown on the Lighting Intensity and Wind Shear Map, or
- (c) shown on the Obstacle Limitation Surface Map, or
- (d) in the "public safety area" on the Public Safety Area Map, or
- (e) in the "3 kilometre wildlife buffer zone" or the "13 kilometre wildlife buffer zone" on the Wildlife Buffer Zone Map.

The land **is not** subject to the *State Environmental Planning Policy (Western Sydney Aerotropolis)* 2020.

21 Development consent conditions for seniors housing

If *State Environmental Planning Policy (Housing) 2021*, Chapter 3, Part 5 applies to the land, any conditions of a development consent granted after 11 October 2007 in relation to the land that are of the kind set out in that Policy, clause 88(2).

The land **is not subject to** any such statement.

22 Site compatibility certificates and development consent conditions for affordable rental housing

- (1) Whether there is a current site compatibility certificate under *State Environmental Planning Policy (Housing) 2021*, or a former site compatibility certificate, of which the council is aware, in relation to proposed development on the land and, if there is a certificate—
 - (a) the period for which the certificate is current, and
 - (b) that a copy may be obtained from the Department.

The land is not subject to any such certificate.

(2) If State Environmental Planning Policy (Housing) 2021, Chapter 2, Part 2, Division 1 or 5 applies to the land, any conditions of a development consent in relation to the land that are of a kind referred to in that Policy, clause 21(1) or 40(1).

The land is not subject to any such statement.

(3) Any conditions of a development consent in relation to land that are of a kind referred to in *State Environmental Planning Policy (Affordable Rental Housing)* 2009, clause 17(1) or 38(1).

The land **is not** subject to any such statement.

(4) In this section former site compatibility certificate means a site compatibility certificate issued under State Environmental Planning Policy (Affordable Rental Housing) 2009.

Section 59(2) Contaminated Land Management Act 1997

- Note: The following matters are prescribed by section 59 (2) of *the Contaminated Land Management Act 1997* as additional matters to be specified in a planning certificate:
 - (a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued;

Not applicable

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued;

Not applicable

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued;

Not applicable

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued; and

Not applicable

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Not applicable

[End of information under section 10.7 (2)]

ADVICE UNDER SECTION 10.7 (5)

Note: The Council is under no obligation to furnish any of the information supplied below. Equally, it may be that not every relevant matter relating to the land is provided below. The Council draws your attention to section 10.7 (6) which states that a council shall not incur any liability in respect of any advice provided in good faith under section 10.7 (5).

Further to your application for information under section 10.7 (5), the Council has resolved to supply answers to the following questions:

A Whether or not the Council has information that would indicate that the land is subject to the risk of flooding or tidal inundation for a 1% annual exceedance probability (AEP) (1 in 100 Year) event

The Council **is aware** of various information that suggests the land may be affected by the 1% AEP flood. The Council is unaware of the accuracy of this information, although further enquiries may be made with the Council's City Services Department in relation to this.

Note: Refer to Question 7A of the preceding certificate under section 10.7 (2) to ascertain whether or not development on the land may be subject to flood related development controls.

B Whether or not the Council has information that would indicate that the land is subject to slip or subsidence

The Council **is not aware** of any investigations that have been carried out.

C Whether or not the land is in the vicinity of a heritage item or heritage conservation area identified in an environmental planning instrument or a proposed heritage item or proposed heritage conservation area identified in a draft local environmental plan

A building, work, relic, tree or place located on land in the vicinity of this land **is identified as a heritage item** in schedule 5 to *Bayside Local Environmental Plan 2021*.

The special provisions of clause 5.10(5) of this plan apply to development on land in the vicinity of heritage items.

D Whether or not a planning agreement entered into under Subdivision 2 of Division 7.1 of Part 7 of the Environmental Planning and Assessment Act 1979 currently applies to the land (but only if, where the Council is not a party to the agreement, information about the agreement has been provided to the Council)

No planning agreement currently applies to the land.

E Details of the Annual Noise Exposure Forecast (ANEF) applying to the land

The ANEF affectation of the land is less than 15.

Note: The ANEF level may restrict the development of the land due to the risk of exposure to aircraft noise.

F Information that indicates whether or not any additional hazards exist for which no policy of council exists to restrict development

Not applicable

G Restrictions of the use of groundwater contained within the Botany Sands Aquifer

Not applicable

H The following policies may be applicable to the land:

Not applicable

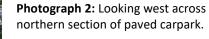
[End of advice under Section 10.7 (5)]

ALTERATIONS AND ADDITIONS TO BUILDINGS

Purchasers are reminded that it is necessary to obtain development consent from the Council prior to carrying out any building alterations or additions, including brick reskinning, replacing windows or internal alterations, or for the demolition of any building, unless the proposed work is specifically exempted by *Bayside Local Environmental Plan 2021* or *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.* All other building work does require the Council's approval.

Should you require any information or advice for any building work that you propose to undertake please contact the Council's Customer Service Centre on 1300 581 299.

Site Photographs



Project Ref: E34871PT Site Address: 277 The Grand Parade, Ramsgate, NSW Selected Site Photos Dated: 2 May 2022

Photograph 1: Looking west across southern portion of paved carpark.

Photographs 3: Example of minimal landscaped and garden bed areas in southwest corner of site.

Appendix C: Laboratory Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	PCBs:	Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	AustralianDrinking Water Guidelines	рН _{ксL} :	pH of filtered 1:20, 1M KCL extract, shaken overnight
AF:	Asbestos Fines	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
ANZG	Australian and New Zealand Guidelines	PQL:	Practical Quantitation Limit
B(a)P:	Benzo(a)pyrene	RS:	Rinsate Sample
CEC:	Cation Exchange Capacity	RSL:	Regional Screening Levels
CRC:	Cooperative Research Centre	RSW:	Restricted Solid Waste
CT:	Contaminant Threshold	SAC:	Site Assessment Criteria
EILs:	Ecological Investigation Levels	SCC:	Specific Contaminant Concentration
ESLs:	Ecological Screening Levels	S _{Cr} :	Chromium reducible sulfur
FA:	Fibrous Asbestos	S _{POS} :	Peroxide oxidisable Sulfur
GIL:	Groundwater Investigation Levels	SSA:	Site Specific Assessment
GSW:	General Solid Waste	SSHSLs	: Site Specific Health Screening Levels
HILs:	Health Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HSLs:	Health Screening Levels	TB:	Trip Blank
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TCA:	1,1,1 Trichloroethane (methyl chloroform)
kg/L	kilograms per litre	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Agency
OPP:	Organophosphorus Pesticides	VOCC:	Volatile Organic Chlorinated Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	WHO:	World Health Organisation
%w/w:	weight per weight		
ppm:	Parts per million		

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in µg/L.

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-B: 'Residential with minimal opportunities for soil access; including dwellings with fully/permanently paved yards like high-rise buildings'

			HEAVY METALS						F	PAHs ORGANOCHLORINE PESTICIDES (OCPs)						OP PESTICIDES (OPPs)		1				
All data in mg/kg unless stated otherwise		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	Carcinogenic	HCB	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES	
				Caulinum	chronnan	сорры	Leau	wiercury	NICKEI	Zinc	PAHs	PAHs				Dieldrin		& DDE				
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1 1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria (SA	AC)		500	150	500	30000	1200	120	1200	60000	400	4	15	400	500	10	90	600	10	340	1	Detected/Not Detec
Sample Reference	Sample Depth	Sample Description																				
BH1	0.15-0.25	F: Sand	<4	<0.4	41	27	20	<0.1	37	65	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH1 - LAB DUP	0.15-0.25	F: Sand	<4	<0.4	39	43	31	<0.1	38	91	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH1 - [TRIPLICATE]	0.15-0.25	F: Sand	<4	<0.4	34	31	28	<0.1	31	74	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	0.3-0.5	F: Sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH2	0.15-0.25	F: Sand	<4	<0.4	14	26	36	<0.1	13	96	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH2	0.8-1.0	F: Sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
BH3	0.15-0.25	F: Sand	<4	<0.4	21	20	21	<0.1	19	67	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH4	0.2-0.3	F: Sand	<4	<0.4	71	30	5	<0.1	68	45	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH4	1.3-1.5	Fill	<4	<0.4	<1	7	2	<0.1	<1	5	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	0.16-0.3	F: Sandy gravel	<4	<0.4	40	25	15	<0.1	39	56	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH5	0.3-0.5	F: Sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH6	0.15-0.25	F: Silty Sand	<4	<0.4	65	36	10	<0.1	61	53	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH6	0.3-0.5	F: Silty Sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
BH6	1.3-1.5	Fill	<4	<0.4	2	2	5	<0.1	1	15	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH7	0.15-0.25	F: Sand	<4	<0.4	7	27	50	<0.1	6	77	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH7 - (DUPLICATE)	0.15-0.25	F: Sand	<4	<0.4	9	28	27	<0.1	8	59	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH7 - [TRIPLICATE]	0.15-0.25	F: Sand	<4	<0.4	11	49	38	<0.1	9	78	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH7	0.3-0.5	Sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
SDUP1	-		<4	<0.4	41	34	26	<0.1	38	81	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Total Number of Samples	5		14	14	14	14	14	14	14	14	12	12	10	10	10	10	10	10	10	10	10	7
Maximum Value			<pql< td=""><td><pql< td=""><td>71</td><td>49</td><td>50</td><td><pql< td=""><td>68</td><td>96</td><td>1.4</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>71</td><td>49</td><td>50</td><td><pql< td=""><td>68</td><td>96</td><td>1.4</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	71	49	50	<pql< td=""><td>68</td><td>96</td><td>1.4</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	68	96	1.4	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected

TABLE S2

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
QL - Envirolab Services					25	50	0.2	0.5	1	1	1	ppm
EPM 2013 HSL Land Use	e Category						HSL-A/B: LC	W/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH1 - LAB DUP	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH1	0.3-0.5	F: Sand	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA	0
BH2	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH3	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH4	0.2-0.3	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH4	1.3-1.5	Sand	1m to <2m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH5	0.16-0.3	F: Sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH6	0.15-0.25	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH6	1.3-1.5	Sand	1m to <2m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH7	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH7 - (DUPLICATE)	0.15-0.25	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH7 - [TRIPLICATE]	0.15-0.25	F: Sand	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	F: Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
Total Number of Samp	oles				12	12	12	12	12	12	12	12
Maximum Value					<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<>	<pql< td=""><td>0.1</td></pql<>	0.1

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1 - LAB DUP	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.3-0.5	F: Sand	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH2	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.2-0.3	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	1.3-1.5	Sand	1m to <2m	Sand	70	240	0.5	220	NL	60	NL
BH5	0.16-0.3	F: Sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.15-0.25	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	1.3-1.5	Sand	1m to <2m	Sand	70	240	0.5	220	NL	60	NL
BH7	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7 - (DUPLICATE)	0.15-0.25	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7 - [TRIPLICATE]	0.15-0.25	F: Sand	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	F: Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3

TABLE S3

SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
QL - Envirolab Services			25	50	100	100
EPM 2013 Land Use Category			RE	SIDENTIAL, PARKLAND	& PUBLIC OPEN SP	ACE
Sample Reference	Sample Depth	Soil Texture				
BH1	0.15-0.25	Coarse	<25	<50	<100	<100
BH1 - LAB DUP	0.15-0.25	Coarse	<25	<50	<100	<100
BH1	0.3-0.5	Coarse	NA	NA	NA	NA
BH2	0.15-0.25	Coarse	<25	<50	<100	<100
BH3	0.15-0.25	Coarse	<25	<50	<100	<100
BH4	0.2-0.3	Coarse	<25	<50	<100	<100
BH4	1.3-1.5	Coarse	<25	<50	<100	<100
BH5	0.16-0.3	Coarse	<25	<50	<100	<100
BH6	0.15-0.25	Coarse	<25	<50	<100	<100
BH6	1.3-1.5	Coarse	<25	<50	<100	<100
BH7	0.15-0.25	Coarse	<25	<50	<100	<100
BH7 - (DUPLICATE)	0.15-0.25	Coarse	<25	<50	<100	<100
BH7 - [TRIPLICATE]	0.15-0.25	Coarse	NA	NA	NA	NA
SDUP1	-	Coarse	<25	<50	<100	<100
tal Number of Samples			12	12	12	12
aximum Value			<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""></pql<></td></pql<>	<pql< td=""></pql<>
ncentration above the SAC			VALUE			
oncentration above the PQL			Bold			

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH1	0.15-0.25	Coarse	700	1000	2500	10000
BH1 - LAB DUP	0.15-0.25	Coarse	700	1000	2500	10000
BH1	0.3-0.5	Coarse	NA	NA	NA	NA
BH2	0.15-0.25	Coarse	700	1000	2500	10000
BH3	0.15-0.25	Coarse	700	1000	2500	10000
BH4	0.2-0.3	Coarse	700	1000	2500	10000
BH4	1.3-1.5	Coarse	700	1000	2500	10000
BH5	0.16-0.3	Coarse	700	1000	2500	10000
BH6	0.15-0.25	Coarse	700	1000	2500	10000
BH6	1.3-1.5	Coarse	700	1000	2500	10000
BH7	0.15-0.25	Coarse	700	1000	2500	10000
BH7 - (DUPLICATE)	0.15-0.25	Coarse	700	1000	2500	10000
BH7 - [TRIPLICATE]	0.15-0.25	Coarse	NA	NA	NA	NA
SDUP1	-	Coarse	700	1000	2500	10000

TABLE 54 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C10-C16	>C16-C34	>C34-C40	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	t Criteria	5,600	4,200	5,800	8,100	140	21,000	5,900	17,000	2,200	
Site Use				HI	GH DENSITY RES	DENTIAL - DIR	ECT SOIL CONT	ACT			
Sample Reference	Sample Depth										
BH1	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH1 - LAB DUP	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH1	0.3-0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
BH2	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH3	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH4	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH4	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH5	0.16-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH6	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH6	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH7	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH7 - (DUPLICATE)	0.15-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH7 - [TRIPLICATE]	0.15-0.25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
Total Number of Sampl	es	12	12	12	12	12	12	12	12	12	12
Maximum Value		<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<>	<pql< td=""><td>0.1</td></pql<>	0.1

TABLE SS ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS

HSL-B: Resider	tial with mi	inimal oppo	ortunities fo	or soil access																						
							F	IELD DATA											LABORATORY DATA							
Date Sampled	Sample reference		Visible ACM in top 100mm	Approx. Volume of So (L)	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)		Asbestos in ACM <7mm	[Asbestos from ACM <7mm in soil] (%w/w)		Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)		Sample refeference		Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g) E	FA and AF	ACM >7mm Estimation %(w/w)	FA and AF Estimation %(w/w)
SAC			No					0.04			0.001			0.001											0.04	0.001
2/05/2022	BH1	0.15-1.6	No	10	6,040	No ACM observed			No ACM <7mm observed			No FA observed							-							
															294592	BH1	0.3-0.5	378.17	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2022	BH2	0.5-1.0	No	10	4,950	No ACM observed			No ACM <7mm observed			No FA observed							-							
															294592	BH2	0.8-1.0	463.08	Chrysotile asbestos detected: Amosite asbestos detected: Crocidolite asbestos detected: Organic Fibres detected	No asbestos detected	0.1846	No visible asbestos detected	0.0855	-	0.0185	<0.001
2/05/2022	BH3	0.15-0.6	No	10	4,490	No ACM observed			No ACM <7mm observed			No FA observed			294592	BH3	0.15-0.25	323.97	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2022	BH4	0.2-0.5	No	10	2,280	No ACM observed			No ACM <7mm observed			No FA observed			294592	BH4	0.2-0.3	603.81	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2022	BH4	0.5-1.2	No	10	6,530	No ACM observed			No ACM <7mm observed			No FA observed							-							
2/05/2022	BH5	0.3-1.5	No	10	6,640	No ACM observed			No ACM <7mm observed			No FA observed			294592	BH5	0.3-0.5	440.59	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
2/05/2022	BH6	0.15-1.1	No	10	9,230	No ACM observed			No ACM <7mm observed			No FA observed							-							
															294592	BH6	0.3-0.5	526.25	Chrysotile asbestos detected:Organic Fibres detected	No asbestos detected	0.7923	No visible asbestos detected	0.417	-	0.0792	<0.001
2/05/2022	BH7	0.3-0.5	No	10	4,150	No ACM observed			No ACM <7mm observed			No FA observed			294592	BH7	0.3-0.5	753.53	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
Concentration a	oove the SAG	c	VALUE																							

TABLE S6 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs

All data in mg/kg unless stated otherwise

and Use Category												URBAN RESID	ENTIAL AND PUBL	IC OPEN SPA	CE								
									AGED HEAV	Y METALS-EILs			EIL	S					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	e Total Xylenes	B(a)P
QL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
mbient Background Concentra	ation (ABC)			-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH1	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	41	27	20	37	65	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH1 - LAB DUP	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	39	43	31	38	91	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH1 - [TRIPLICATE]	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	34	31	28	31	74	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH2	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	14	26	36	13	96	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH3	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	21	20	21	19	67	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH4	0.2-0.3	F: Sand	Coarse	NA	NA	NA	<4	71	30	5	68	45	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH4	1.3-1.5	Sand	Coarse	NA	NA	NA	<4	<1	7	2	<1	5	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH5	0.16-0.3	F: Sandy gravel	Coarse	NA	NA	NA	<4	40	25	15	39	56	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6	0.15-0.25	F: Silty Sand	Coarse	NA	NA	NA	<4	65	36	10	61	53	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH6	1.3-1.5	Sand	Coarse	NA	NA	NA	<4	2	2	5	1	15	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	7	27	50	6	77	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH7 - (DUPLICATE)	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	9	28	27	8	59	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH7 - [TRIPLICATE]	0.15-0.25	F: Sand	Coarse	NA	NA	NA	<4	11	49	38	9	78	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP1	-	F: Sand	Coarse	NA	NA	NA	<4	41	34	26	38	81	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.1
otal Number of Samples				0	0	0	14	14	14	14	14	14	12	10	12	12	12	12	12	12	12	12	12
Iaximum Value				NA	NA	NA	<pql< td=""><td>71</td><td>49</td><td>50</td><td>68</td><td>96</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	71	49	50	68	96	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.1</td></pql<></td></pql<>	<pql< td=""><td>0.1</td></pql<>	0.1

ine corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below e guide

Sample Reference	Sample Depth	Sample Description	Soil Texture	pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH1	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH1 - LAB DUP	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH1 - [TRIPLICATE]	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190											ı
BH2	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH3	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH4	0.2-0.3	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH4	1.3-1.5	Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH5	0.16-0.3	F: Sandy gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH6	0.15-0.25	F: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH6	1.3-1.5	Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH7	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH7 - (DUPLICATE)	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH7 - [TRIPLICATE]	0.15-0.25	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190											i
SDUP1	-	F: Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20

EIL AND ESL ASSESSMENT CRITERIA

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

TABLE S7

4 1 0 100 0 1900 0 400 0 7600	Copper 1 NSL NSL NSL NSL 27 43 31 NA 26 NA 20 30	Lead 1 100 1500 400 6000 20 31 28 NA 36 NA 21	Mercury 0.1 4 50 16 200 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 NA <0.1 NA <0.1	Nickel 1 40 1050 160 4200 37 38 31 NA 13 NA	Zinc 1 NSL NSL NSL 65 91 74 NA 96	Total PAHs - 200 200 800 800 800 800 800 800 800 800	B(a)P 0.05 0.8 10 3.2 23 <0.05 <0.05 NA NA	Total Endosulfans 0.1 60 108 240 432 432 432 432 432 432 432 80.1 <0.1 NA	Chloropyrifos 0.1 4 7.5 16 30 4 7.5 16 30	Total Moderately Harmful 0.1 250 250 1000 1000 1000 <0.1 <0.1 <0.1 NA	Total <u>Scheduled</u> 0.1 50 50 50 50 	PCBs 0.1 50 50 50 50 50 <0.1 <0.1 <0.1 NA	C ₆ -C ₉ 25 650 2600 2600 2600 2600	<pre>C10-C14 50 </pre> 50 <50 <50 NA	C ₁₅ -C ₂₈ 100 NSL NSL NSL <100 <100	<pre>C29-C36 100 <100 <100</pre>	Total C ₁₀ -C ₃₆ 50 10,000 10,000 40,000 40,000 40,000 <50 <50 <50	Benzene 0.2 10 18 40 72 <0.2 <0.2 <0.2 NA	0.5 288 518 1,152 2,073 <0.5 <0.5	Ethyl benzene 1 600 1,080 2,400 4,320	Total Xylenes 1 1,000 1,800 4,000 7,200 7,200 <1 <1	ASBESTOS FIBR 100 - - - - NA NA NA
100 100 0 1900 0 400 0 7600	NSL NSL NSL 27 43 31 NA 26 NA 20	1500 400 6000 20 31 28 NA 36 NA	4 50 16 200 <0.1<0.1<0.1<0.1NA<0.1NA	1050 160 4200 37 38 31 NA 13	NSL NSL NSL 65 91 74 NA	200 800 800 0.1 0.1 NA NA	0.8 10 3.2 23 <0.05 <0.05 NA	60 108 240 432 <0.1 <0.1 NA	4 7.5 16 30 <0.1 <0.1 NA	250 250 1000 1000 <0.1 <0.1 NA	50 50 50 50 50 <0.1 <0.1	50 50 50 50 50 <0.1 <0.1	650 650 2600 2600 <25 <25 <25	<50 <50	NSL NSL NSL <100 <100	<100 <100	50 10,000 40,000 40,000 <50 <50	10 18 40 72 <0.2 <0.2	288 518 1,152 2,073 <0.5 <0.5	1,080 2,400 4,320 <1	1,000 1,800 4,000 7,200 <1	- - - NA NA
0 1900 0 400 0 7600	NSL NSL NSL 27 43 31 NA 26 NA 20	1500 400 6000 20 31 28 NA 36 NA	<pre>16 200 </pre> <0.1 <0.1 <0.1 <0.1 NA <0.1 NA	1050 160 4200 37 38 31 NA 13	NSL NSL NSL 65 91 74 NA	200 800 800 0.1 0.1 NA NA	10 3.2 23 <0.05 <0.05 NA	108 240 432 <0.1 <0.1 NA	7.5 16 30 <0.1 <0.1 NA	250 1000 1000 <0.1 <0.1 NA	50 50 50 <0.1 <0.1	50 50 50 <0.1 <0.1	650 2600 2600 <25 <25 <25	<50	NSL NSL NSL <100 <100	<100	10,000 40,000 40,000 <50 <50	18 40 72 <0.2 <0.2	518 1,152 2,073 <0.5 <0.5	1,080 2,400 4,320 <1	1,800 4,000 7,200 <1	NA NA
0 400 0 7600 4 41 4 39 4 34 A NA 4 14 A NA 4 21 4 71	NSL NSL 27 43 31 NA 26 NA 20	400 6000 20 31 28 NA 36 NA	<pre>16 200 </pre> <0.1 <0.1 <0.1 <0.1 NA <0.1 NA	160 4200 37 38 31 NA 13	NSL NSL 65 91 74 NA	800 800 0.1 0.1 NA NA	3.2 23 <0.05 <0.05 NA	240 432 <0.1 <0.1 NA	16 30 <0.1 <0.1 NA	1000 1000 <0.1 <0.1 NA	50 50 <0.1 <0.1	50 50 <0.1 <0.1	2600 2600 <25 <25	<50	NSL NSL <100 <100	<100	40,000 40,000 <50 <50	40 72 <0.2 <0.2	1,152 2,073 <0.5 <0.5	2,400 4,320 <1	4,000 7,200 <1	NA NA
0 7600 4 41 4 39 4 34 A NA 4 14 A NA 4 21 4 71	NSL 27 43 31 NA 26 NA 20	6000 20 31 28 NA 36 NA	<pre> 200 </pre> <pre> <0.1 </pre> <pre> <0.1 </pre> <pre> </pre>	4200 37 38 31 NA 13	NSL NSL 65 91 74 NA	800 800 0.1 0.1 NA NA	23 <0.05 <0.05 NA	432 <0.1 <0.1 NA	30 <0.1 <0.1 NA	1000 <0.1 <0.1 NA	50 <0.1 <0.1	50 <0.1 <0.1	2600 2600 <25 <25	<50	NSL <100 <100	<100	40,000 <50 <50	72 <0.2 <0.2	1,152 2,073 <0.5 <0.5	4,320	7,200	NA NA
0 7600 4 41 4 39 4 34 A NA 4 14 A NA 4 21 4 71	NSL 27 43 31 NA 26 NA 20	6000 20 31 28 NA 36 NA	<pre> 200 </pre> <pre> <0.1 </pre> <pre> <0.1 </pre> <pre> </pre>	4200 37 38 31 NA 13	NSL 65 91 74 NA	800 0.1 0.1 NA NA	23 <0.05 <0.05 NA	432 <0.1 <0.1 NA	30 <0.1 <0.1 NA	1000 <0.1 <0.1 NA	50 <0.1 <0.1	<0.1 <0.1	2600 <25 <25	<50	<100 <100	<100	40,000 <50 <50	<0.2 <0.2	2,073 <0.5 <0.5	<1	7,200	NA NA
4 41 4 39 4 34 A NA 4 14 A NA 4 21 4 71	27 43 31 NA 26 NA 20	20 31 28 NA 36 NA	<0.1 <0.1 <0.1 NA <0.1 NA	37 38 31 NA 13	65 91 74 NA	0.1 0.1 NA NA	<0.05 <0.05 NA	<0.1 <0.1 NA	<0.1 <0.1 NA	<0.1 <0.1 NA	<0.1	<0.1 <0.1	<25 <25	<50	<100 <100	<100	<50	<0.2 <0.2	<0.5 <0.5	<1	<1	NA
4 39 4 34 A NA 4 14 A NA 4 21 4 71	43 31 NA 26 NA 20	31 28 NA 36 NA	<0.1 <0.1 NA <0.1 NA	38 31 NA 13	91 74 NA	0.1 NA NA	<0.05 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5			NA
4 34 A NA 4 14 A NA 4 21 4 71	31 NA 26 NA 20	28 NA 36 NA	<0.1 NA <0.1 NA	31 NA 13	74 NA	NA NA	NA	NA	NA	NA								-		<1	<1	
A NA 4 14 A NA 4 21 4 71	NA 26 NA 20	NA 36 NA	NA <0.1 NA	NA 13	NA	NA					NA	NΔ	NIA	NIA				NA				
4 14 A NA 4 21 4 71	26 NA 20	36 NA	<0.1 NA	13		-	NA	NA	NA			INA.	INA	INA	NA	NA	NA		NA	NA	NA	NA
A NA 4 21 4 71	NA 20	NA	NA		96					NA	Not Detecte											
4 21 4 71	20			NA		< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
4 71		21			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
	30		<0.1	19	67	0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detecte
1 -1	30	5	<0.1	68	45	0.4	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detecte
.4 <1	7	2	<0.1	<1	5	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
.4 40	25	15	<0.1	39	56	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detecte
.4 65	36	10	<0.1	61	53	0.2	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
	2	5	<0.1	1			< 0.05	NA	NA		NA	NA						-		<1	<1	NA
.4 7		50	<0.1	6	77	0.4	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2		<1	<1	NA
				8		-														<1		NA
.4 11	49		<0.1	9	78	NA	NA	NA	NA		NA			NA								
								-										-				Not Detecte
4 41	34	26	<0.1	38	81	1.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
1 14	14	14	14	14	14	12	12	10	10	10	10	10	12	12	12	12	12	12	12	12	12	7
QL 71	49	50	<pql< td=""><td>68</td><td>96</td><td>1.4</td><td>0.1</td><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	68	96	1.4	0.1	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected
A .4 .4 .4 .4 .4 .4	NA 2 7 9 11 NA 41 14 71	NA NA 2 2 7 27 9 28 11 49 NA NA 41 34 14 14 71 49	NA NA NA 2 2 5 7 27 50 9 28 27 11 49 38 NA NA NA 41 34 26 114 14 14 71 49 50	NA NA NA NA 2 2 5 <0.1	NA NA NA NA NA 2 2 5 <0.1	NA NA NA NA NA NA 2 2 5 <0.1	NA NA NA NA NA NA NA 2 2 5 <0.1	NA Q.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA<	NA NA <th< td=""><td>NA NA <th< td=""></th<></td></th<>	NA NA <th< td=""></th<>

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

TABLE S8 SOIL LABORA All data in mį		ESULTS ted otherwise	
			Nickel
PQL - Envirolab	Services		0.02
TCLP1 - Genera	l Solid Waste		2
TCLP2 - Restric	ted Solid Wast	te	8
TCLP3 - Hazard	ous Waste		>8
Sample Reference	Sample Depth	Sample Description	
BH4	0.2-0.3	F: Sand	0.06
BH6	0.15-0.25	F: Silty Sand	<0.02
Total Numbe	r of samples		2
Maximum Va	lue		0.06
General Solid V Restricted Solic Hazardous Was	Waste		VALUE VALUE VALUE
Concentration			Bold

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

TABLE Q1

SOIL QA/	QC SUMMARY																																																	
		ТКН С6 - С10	TRH > C10-C16	TRH >C34-C40	Benzene	loluene Ethylbenzene	m+p-xylene	o-xyrene Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	НСВ	alpha- BHC camma- BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane Endosulfan I	pp-DDE	Dieldrin	Endrin	pp- DDD Endosulfan II	pp- DDT	Endrin Aldehyde	Methoxychlor	Azinphos-methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion Eanitrothion	Malathion	Parathion	Ronnel	Total PCBS	Auseriuc Cadmium	Chromium	Copper	Mercury	Nickel
	PQL Envirolab SYD	25	50 1	00 100	0.2 0	0.5 1	2	1 0.1	0.1	0.1 0	0.1 0	1 0.1	0.1	0.1 0	0.1 0.1	0.2	0.05	0.1 0.1	0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0	0.1 0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0	0.1 0.1	1 0.1	0.1	0.1	0.1 0.	1 0.1					1	1 1	0.1	1 1
	PQL Envirolab VIC	25	50 1	00 100	0.2 0	0.5 1.0	2.0 1	.0 0.1	0.1	0.1 0	0.1 0	1 0.1	0.1	0.1 (0.1 0.1	0.2	0.1	0.1 0.1	. 0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0	0.1 0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0	0.1 0.1	1 0.1	0.1	0.1	0.1 0.	1 0.1	0.1	0.1 0	0.1 4.	.0 0.4	1.0	1.0 1.0) 0.1	1.0 1.
а	BH1 0.15-0.25	<25	<50 <	00 <100	<0.2 <	0.5 <1	<2 <	1 <0.1	1 <0.1	<0.1 <	<0.1 0.	1 <0.1	<0.1	<0.1 <	:0.1 <0.1	1 <0.2	<0.05 <	<0.1 <0.	1 <0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <	:0.1 <0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <	:0.1 <	4 <0.4	41	27 20	0 <0.1	37 65
oratory	SDUP1 -	<25	<50 <	00 <100	<0.2 <	0.5 <1	<2 <	1 <0.1	1 <0.1	<0.1 <	<0.1 0.	2 <0.1	0.4	0.3	0.2 0.2	<0.2	0.1 <	<0.1 <0.	1 <0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1 <0	.1 <0.1	< 0.1	<0.1 <	:0.1 <	4 <0.4	41	34 26	ό <0.1	38 8
licate	MEAN	nc	nc	c nc	nc r	nc nc	nc r	nc nc	nc	nc	nc 0.1	l5 nc	0.225	0.175 0.	.125 0.12	5 nc	0.0625	nc nc	nc	nc	nc n	c nc	nc	nc n	nc nc	nc	nc n	ic nc	nc	nc i	nc nc	nc	nc n	c nc	nc	nc r	nc ni	c nc	nc	nc	nc n	c nc	nc	nc i	nc n	ic nc	41	30.5 23	3 nc	37.5 7
	RPD %	nc	nc	c nc	nc r	nc nc	nc r	nc nc	nc	nc	nc 67	% nc	156%	143% 1	20% 120%	<mark>%</mark> nc	120%	nc nc	nc	nc	nc n	c nc	nc	nc n	nc nc	nc	nc n	ic nc	nc	nc	nc nc	nc	nc n	c nc	nc	nc r	nc no	c nc	nc	nc	nc n	c nc	nc	nc i	nc n	ic nc	0%	23% 269	-	3% 22
	TB -	<25	<50 <	00 <100	<0.2 <	0.5 <1	<2 <	1 <0.1	1 <0.1	<0.1 <	<0.1 <0	.1 <0.1	<0.1	<0.1 <	:0.1 <0.1	1 <0.2	<0.05 <	<0.1 <0.	1 <0.1	NA	NA N	A NA	NA	NA N	A NA	NA	NA N	A NA	NA	NA 1	NA NA	NA	NA N	A NA	NA	NA M	NA N	A NA	NA	NA	NA N	A NA	NA	NA M	NA <	4 <0.4	2	_	3 <0.1	_
	2/05/22			_		_		_			_				_			_									_				_			_		_					_	_								
	FR µg/L		<50 <	_	<1 <	<1 <1	<2 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <1	<2	<1	<1 <1	<1	NA	NA N	A NA	NA	NA N	NA NA	NA	NA N	A NA	NA	NA N	NA NA	NA	NA N	A NA	NA	NA M	NA NA	A NA	NA	NA	NA N	A NA	NA	NA M	NA <0	.05 <0.01	<0.01	0.07 <0.(03 <0.00	05 <0.02 <0.
2	2/05/22							_	_			_						_			_							_									_													
							103% 10	3%								_			_																							_			-	_	_	_	_	
																				-																								-						

Preliminary (Stage 1) Site Investigation 277 The Grand Parade, Ramsgate, NSW E34871PT

ABBREVIATIONS AND EXPLANATIONS FOR ACID SULFATE SOIL TABLE

Abbreviations used in the Tables:

ANC _{BT}	Acid Neutralising Capacity - Back Titration
ANCE	Excess Acid Neutralising Capacity
CaCO ₃	Calcium Carbonate
kg	kilogram
mol H ⁺ /t	moles hydrogen per tonne
pHF	Field pH
pHFOX	Field peroxide pH
рН _{ксі}	Pottasium chloride pH
S	Sulfur
SCr	The symbol given to the result from the Chromium Reducible Sulfur method
S _{NAS}	Net Acid Soluble Sulfur
% w/w	Percentage by mass

Results have been assessed against the criteria specified in Table 1.1 of National Acid sulfate Soil Guidance - National acid sulfate soil identification and laboratory method manual. Water Quality Australia. June 2018

Soil Texture:	Coarse	Analysis		рН _ғ а	ind pH _{FOX}			Actual Acidity (Titratable Actual Acidity - TAA)		Ilfidic Acidity	Retained Acidity	Acid Neutralising Capacity (ANC _{BT})	without ANCE	s-Net Acidity without ANCE	Liming Rate - withou ANCE
			рН _F	pH _{FOX}	Reaction	pH _F - pH _{FOX}	рН _{ксь}	(mol H ⁺ /t)	(% SCr)	(mol H [*] /t)	(%S _{NAS})	(% CaCO₃)	(mol H ⁺ /t)	(%w/w S)	(kg CaCO₃/tonne)
National Acid Guidance	e (2018)		-	-	-	-	-	-	-	-	-	-	18	0.03	-
Sample Reference	Sample Depth (m)	Sample Description													
BH1	0.3-0.5	F: Sand	10	8.2	High reaction	1.8	10.2	<5	< 0.005	<3	[NT]	6.4	<5	< 0.005	<0.75
BH1	0.3-0.5	F: Sand	9.9	8	High reaction	1.9	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	1.3-1.5	Sand	10	7.2	Low reaction	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	1.8-2.0	Sand	9.4	7.1	Low reaction	2.3	9.9	<5	< 0.005	<3	[NT]	0.35	<5	< 0.005	<0.75
BH1	2.9-3.0	Sand	8.9	7.1	Low reaction	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	3.9-4.0	Sand	8.5	6.7	Low reaction	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	4.9-5.0	Sand	8.8	6.7	Low reaction	2.1	9.9	<5	0.006	4	[NT]	0.9	<5	0.01	<0.75
BH1	5.9-6.0	Sand	8.6	6.8	Low reaction	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH1	6.9-7.0	Sand	8.4	6.7	Low reaction	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	0.3-0.5	F: Sand	8.7	7.6	Low reaction	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	1.3-1.5	F: Sand	9	6.6	Low reaction	2.4	9.9	<5	0.007	4	[NT]	0.25	<5	0.01	<0.75
BH5	1.8-2.0	Sand	8.2	7.1	Low reaction	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	1.8-2.0	Sand	8.1	6.9	Low reaction	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	2.9-3.0	Sand	8.1	6	Low reaction	2.1	7.1	<5	0.007	4	[NT]	0.25	<5	0.01	<0.75
BH5	3.9-4.0	Sand	8.1	6.3	Low reaction	1.8	9.8	<5	0.005	3	[NT]	< 0.05	<5	0.01	<0.75
BH5	4.9-5.0	Sand	8.4	6.5	Low reaction	1.9	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	5.9-6.0	Sand	8.1	6.6	Low reaction	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH5	6.9-7.0	Sand	8.4	6.4	Low reaction	2	9.9	<5	0.05	29	[NT]	1.6	29.0	0.05	2.2
otal Number	of Samples		18	18	-	18	7	7	7	7	7	7	7	7	7
1inimum Valu	e		8.1	6.0	-	1.1	7.1	<pql< td=""><td>0.005</td><td>3</td><td><pql< td=""><td>0.25</td><td>29.0</td><td>0.005</td><td>2.2</td></pql<></td></pql<>	0.005	3	<pql< td=""><td>0.25</td><td>29.0</td><td>0.005</td><td>2.2</td></pql<>	0.25	29.0	0.005	2.2
laximum Valu	le		10.0	8.2	-	2.8	10.2	<pql< td=""><td>0.05</td><td>29</td><td><pql< td=""><td>6.40</td><td>29.0</td><td>0.047</td><td>2.2</td></pql<></td></pql<>	0.05	29	<pql< td=""><td>6.40</td><td>29.0</td><td>0.047</td><td>2.2</td></pql<>	6.40	29.0	0.047	2.2

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ADWG:	AustralianDrinking Water Guidelines	PC
ANZG	Australian and New Zealand Guidelines	PC
B(a)P:	Benzo(a)pyrene	PQ
CRC:	Cooperative Research Centre	RS
ESLs:	Ecological Screening Levels	RS
GIL:	Groundwater Investigation Levels	SA
HILs:	Health Investigation Levels	SS
HSLs:	Health Screening Levels	SS
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	ΤВ
NA:	Not Analysed	TC
NC:	Not Calculated	тс
NEPM:	National Environmental Protection Measure	TS
NHMRC:	National Health and Medical Research Council	TR
NL:	Not Limiting	UC
NSL:	No Set Limit	US
OCP:	Organochlorine Pesticides	vo
OPP:	Organophosphorus Pesticides	WI
PAHs:	Polycyclic Aromatic Hydrocarbons	
	Dorto nor million	

ppm: Parts per million

- **CBs:** Polychlorinated Biphenyls
- CE: Perchloroethylene (Tetrachloroethylene or Tetrachloroethene) QL: Practical Quantitation Limit
- S: Rinsate Sample
- SL: Regional Screening Levels
- AC: Site Assessment Criteria
- **SA:** Site Specific Assessment
- SHSLs Site Specific Health Screening Levels
- Trip Blank B:
- CA: 1,1,1 Trichloroethane (methyl chloroform)
- **CE:** Trichloroethylene (Trichloroethene)
- Trip Spike S:
- RH: Total Recoverable Hydrocarbons
- CL: Upper Level Confidence Limit on Mean Value
- SEPA United States Environmental Protection Agency
 - **OCC:** Volatile Organic Chlorinated Compounds
 - /HO: World Health Organisation

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

TABLE G1

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC All results in µg/L unless stated otherwise.

	Envirolab Services	ANZG 2018 Marine Waters	MW1	SAM MW1 LAB DUP	MW5	WDUP1
norganic Compounds and Parameters		7 - 8.5	7.6	NA	7.4	NA
Electrical Conductivity (µS/cm)	1	NSL	380	NA	500	NA
Metals and Metalloids		2.2				-
Arsenic (As III) Cadmium	0.1	2.3 0.7	6 <0.1	NA NA	4 <0.1	6 <0.1
Chromium (SAC for Cr III adopted)	1	27	1	NA	16	1
Copper	1	1.3	1	NA	35	2
ead	1	4.4	<1	NA	<1	<1
Total Mercury (inorganic)	0.05	0.1	<0.05	NA	<0.05	<0.05
Nickel	1	7	<1	NA	<1	<1
Zinc Monocyclic Aromatic Hydrocarbons (BTEX C	1 Compounds)	15	6	NA	26	7
Benzene	1	500	<1	<1	<1	<1
Foluene	1	180	<1	<1	<1	<1
Ethylbenzene	1	5	<1	<1	<1	<1
n+p-xylene	2	75	<2	<2	<2	<2
p-xylene	1	350	<1	<1	<1	<1
^r otal xylenes /olatile Organic Compounds (VOCs), includ i	2	NSL	<2	<2	<2	<2
Dichlorodifluoromethane	10	NSL	<10	<10	<10	NA
Chloromethane	10	NSL	<10	<10	<10	NA
/inyl Chloride	10	100	<10	<10	<10	NA
Bromomethane	10	NSL	<10	<10	<10	NA
Chloroethane	10	NSL	<10	<10	<10	NA
Frichlorofluoromethane	10	NSL	<10	<10	<10	NA
I,1-Dichloroethene Frans-1,2-dichloroethene	1	700 NSL	<1 <1	<1 <1	<1 <1	NA
I,1-dichloroethane	1	250	<1	<1	<1	NA
Cis-1,2-dichloroethene	1	NSL	<1	<1	<1	NA
Bromochloromethane	1	NSL	<1	<1	<1	NA
Chloroform	1	370	<1	<1	<1	NA
2,2-dichloropropane	1	NSL	<1	<1	<1	NA
L,2-dichloroethane	1	1900	<1	<1	<1	NA
l,1,1-trichloroethane	1	270 NSI	<1	<1	<1	NA
L,1-dichloropropene Cyclohexane	1	NSL NSL	<1 <1	<1 <1	<1 <1	NA
Carbon tetrachloride	1	240	<1	<1	<1	NA
Benzene	1	500	<1	<1	<1	NA
Dibromomethane	1	NSL	<1	<1	<1	NA
I,2-dichloropropane	1	900	<1	<1	<1	NA
Trichloroethene	1	330	<1	<1	<1	NA
Bromodichloromethane	1	NSL	<1	<1	<1	NA
rans-1,3-dichloropropene cis-1,3-dichloropropene	1	NSL NSL	<1 <1	<1 <1	<1 <1	NA
L,1,2-trichloroethane	1	1900	<1	<1	<1	NA
Foluene	1	180	<1	<1	<1	NA
I,3-dichloropropane	1	1100	<1	<1	<1	NA
Dibromochloromethane	1	NSL	<1	<1	<1	NA
I,2-dibromoethane	1	NSL	<1	<1	<1	NA
Fetrachloroethene	1	70	<1	<1	<1	NA
L,1,1,2-tetrachloroethane	1	NSL 55	<1 <1	<1 <1	<1 <1	NA
Chlorobenzene Ethylbenzene	1	5	<1	<1	<1	NA
Bromoform	1	NSL	<1	<1	<1	NA
n+p-xylene	2	75	<2	<2	<2	NA
Styrene	1	NSL	<1	<1	<1	NA
I,1,2,2-tetrachloroethane	1	400	<1	<1	<1	NA
p-xylene	1	350	<1	<1	<1	NA
L,2,3-trichloropropane	1	NSL	<1	<1	<1	NA
sopropylbenzene Bromobenzene	1	30 NSL	<1 <1	<1 <1	<1 <1	NA
n-propyl benzene	1	NSL	<1	<1	<1	NA
2-chlorotoluene	1	NSL	<1	<1	<1	NA
1-chlorotoluene	1	NSL	<1	<1	<1	NA
L,3,5-trimethyl benzene	1	NSL	<1	<1	<1	NA
Fert-butyl benzene	1	NSL	<1	<1	<1	NA
L,2,4-trimethyl benzene	1	NSL 260	<1 <1	<1 <1	<1 <1	NA
L,3-dichlorobenzene Sec-butyl benzene	1	260 NSL	<1 <1	<1 <1	<1 <1	NA
L,4-dichlorobenzene	1	60	<1	<1	<1	NA
l-isopropyl toluene	1	NSL	<1	<1	<1	NA
l,2-dichlorobenzene	1	160	<1	<1	<1	NA
n-butyl benzene	1	NSL	<1	<1	<1	NA
I,2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	NA
L,2,4-trichlorobenzene	1	20	<1	<1	<1	NA
Hexachlorobutadiene I,2,3-trichlorobenzene	1	NSL 3	<1 <1	<1 <1	<1 <1	NA
Polycyclic Aromatic Hydrocarbons (PAHs)	1	J	~1	~1	~1	NA INA
Naphthalene	0.2	50	<0.2	NA	<0.2	<0.2
Acenaphthylene	0.1	NSL	<0.1	NA	<0.1	<0.1
Acenaphthene	0.1	NSL	<0.1	NA	<0.1	<0.1
luorene	0.1	NSL	<0.1	NA	<0.1	<0.1
Phenanthrene	0.1	0.6	<0.1	NA	<0.1	<0.1
Anthracene Fluoranthene	0.1 0.1	0.01	<0.1	NA	<0.1 <0.1	<0.1 <0.1
Pyrene	0.1	1 NSL	<0.1 <0.1	NA	<0.1	<0.1 <0.1
Benzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
Chrysene	0.1	NSL	<0.1	NA	<0.1	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1	NA	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
	0.1	NSL	<0.1	NA	<0.1	<0.1
enzo(g,h,i)perylene						

Copyright JK Environments

TABLE G2

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILS All results in up/L unless stated otherwise.

	PQL Envirolab	Recreational (10 x NHMRC	MW1	SAM MW1	MW5	WDUP:
	Services	ADWG)		LAB DUP		
norganic Compounds and Parameters		6.5 - 8.5	7.6	NA	7.4	NA
Electrical Conductivity (μS/cm)	1	NSL	380	NA	500	NA
Metals and Metalloids	1	100	6	NA	4	6
Arsenic (As III) Cadmium	0.1	20	<0.1	NA	4	<0.1
Chromium (total)	1	500	1	NA	16	1
Copper	1	20000	1	NA	35	2
Lead	1	100	<1	NA	<1	<1
Fotal Mercury (inorganic)	0.05	10	<0.05	NA	<0.05	<0.05
Nickel	1	200	<1	NA	<1	<1
Zinc	1	30000	6	NA	26	7
Monocyclic Aromatic Hydrocarbons (BTEX Com	pounds)					
Benzene	1	10	<1	<1	<1	<1
Foluene	1	8000	<1	<1	<1	<1
Ethylbenzene	1	3000	<1	<1	<1	<1
n+p-xylene	2	NSL	<2	<2	<2	<2
p-xylene	1	NSL	<1	<1	<1	<1
Fotal xylenes	2	6000	<2	<2	<2	<2
Volatile Organic Compounds (VOCs), including o		NC	-10	<10	<10	NIA
Dichlorodifluoromethane	10	NSL	<10	<10	<10	NA
Chloromethane	10	NSL 3	<10	<10	<10	NA
/inyl Chloride Bromomethane	10	NSL	<10 <10	<10 <10	<10 <10	NA
Chloroethane	10	NSL	<10	<10	<10	NA
Frichlorofluoromethane	10	NSL	<10	<10	<10	NA
L,1-Dichloroethene	10	300	<10	<10	<10	NA
Frans-1,2-dichloroethene	1	600	<1	<1	<1	NA
L,1-dichloroethane	1	NSL	<1	<1	<1	NA
Cis-1,2-dichloroethene	1	600	<1	<1	<1	NA
Bromochloromethane	1		<1	<1	<1	NA
Chloroform	1	2500	<1	<1	<1	NA
2,2-dichloropropane	1	NSL	<1	<1	<1	NA
L,2-dichloroethane	1	30	<1	<1	<1	NA
L,1,1-trichloroethane	1	NSL	<1	<1	<1	NA
I,1-dichloropropene	1	NSL	<1	<1	<1	NA
Cyclohexane	1	NSL	<1	<1	<1	NA
Carbon tetrachloride	1	30	<1	<1	<1	NA
Benzene	1	10	<1	<1	<1	NA
Dibromomethane	1	NSL	<1	<1	<1	NA
L,2-dichloropropane	1	NSL	<1	<1	<1	NA
Frichloroethene	1	NSL	<1	<1	<1	NA
Bromodichloromethane	1	NSL	<1	<1	<1	NA
rans-1,3-dichloropropene	1	1000	<1	<1	<1	NA
cis-1,3-dichloropropene	1	1000	<1	<1	<1	NA
1,1,2-trichloroethane	1	NSL	<1	<1	<1	NA
Foluene	1	8000	<1	<1	<1	NA
L,3-dichloropropane	1	NSL	<1	<1	<1	NA
Dibromochloromethane	1	NSL	<1	<1	<1	NA
L,2-dibromoethane	1	NSL	<1	<1	<1	NA
Tetrachloroethene	1	500	<1	<1	<1	NA
I,1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	NA
Chlorobenzene	1	3000	<1	<1	<1	NA
Ethylbenzene	1	3000	<1	<1	<1	NA
Bromoform	1	NSL	<1	<1	<1	NA
n+p-xylene	2	NSL	<2	<2	<2	NA
Styrene	1	300	<1	<1	<1	NA
L,1,2,2-tetrachloroethane	1	NSL	<1	<1	<1	NA
p-xylene	1	NSL	<1	<1	<1	NA
L,2,3-trichloropropane	1	NSL	<1	<1	<1	NA
sopropylbenzene	1	NSL	<1	<1	<1	NA
Bromobenzene	1	NSL	<1	<1	<1	NA
n-propyl benzene	1	NSL	<1	<1	<1	NA
2-chlorotoluene	1	NSL	<1	<1 <1	<1	NA
4-chlorotoluene	1		<1 <1	<1 <1	<1 <1	NA
L,3,5-trimethyl benzene	1	NSL NSL	<1 <1	<1 <1	<1 <1	NA
Fert-butyl benzene I,2,4-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	NA
I,2,4-trimethyl benzene I,3-dichlorobenzene	1	200	<1 <1	<1 <1	<1 <1	NA
Sec-butyl benzene	1	NSL	<1 <1	<1 <1	<1	NA
Jec-butyl benzene	1	400	<1 <1	<1 <1	<1	NA
1-isopropyl toluene	1	NSL	<1	<1	<1	NA
L,2-dichlorobenzene	1	15000	<1	<1	<1	NA
n-butyl benzene	1	NSL	<1	<1	<1	NA
L,2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	NA
L,2,4-trichlorobenzene	1		<1	<1	<1	NA
I,2,3-trichlorobenzene	1	300	<1	<1	<1	NA
Hexachlorobutadiene	1	7	<1	<1	<1	NA
Polycyclic Aromatic Hydrocarbons (PAHs)						
Naphthalene	0.2	NSL	<0.2	NA	<0.2	<0.2
Acenaphthylene	0.1	NSL	<0.1	NA	<0.1	<0.1
Acenaphthene	0.1	NSL	<0.1	NA	<0.1	<0.1
luorene	0.1	NSL	<0.1	NA	<0.1	<0.1
Phenanthrene	0.1	NSL	<0.1	NA	<0.1	<0.1
Anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
Fluoranthene	0.1	NSL	<0.1	NA	<0.1	<0.1
Pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1
3enzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
Chrysene	0.1	NSL	<0.1	NA	<0.1	<0.1
3enzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1	NA	<0.1	<0.1
Selizo(a)pyrelie	0.1	NSL	<0.1	NA	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene						
ndeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene		NSL NSL	<0.1 <0.1	NA	<0.1 <0.1	<0.1 <0.1

Copyright JK Environments

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

SAMPLES

MW1

MW5

WDUP1

TABLE G3 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO DRINKING WATER GILs All results in µg/L unless stated otherwise. PQL PQL Envirolab ADWG 2011 MW1 Inorganic Compounds and Parameters pH 6.5 - 8.5 7.6

etals and Metalloids rsenic (As III) admium nromium (total) opper ead otal Mercury (inorganic) ickel nc lonocyclic Aromatic Hydrocarbons (BTEX Compou enzene obluene hylbenzene +p-xylene xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane nloromethane nyl Chloride comomethane	1 1 2 1 2	6.5 - 8.5 NSL 10 2 50 2000 10 1 20 3000 1 1 800 300 NSL NSL 600	$\begin{array}{c} 7.6 \\ 380 \\ \hline \\ 6 \\ < 0.1 \\ 1 \\ 1 \\ < 1 \\ < 0.05 \\ < 1 \\ 6 \\ \hline \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 2 \\ < 1 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ < 2 \\ $	NA <1 <1 <2 <1	7.4 500 4 <0.1 16 35 <1 <0.05 <1 26 <1 <1 <1 <1 <1 <1 <2	NA NA 6 <0.1 1 2 <1 <0.05 <1 7 <1 <1 <1 <1
ectrical Conductivity (μS/cm) letals and Metalloids rsenic (As III) admium nromium (total) opper ead ostal Mercury (inorganic) ickel nc lonocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene hylbenzene +p-xylene xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane nloromethane nyl Chloride romomethane	1 0.1 1 1 0.05 1 1 1 1 1 1 2 1 1 2 0 7 1 4 0 10 10 10	NSL 10 2 50 2000 10 1 20 3000 1 800 300 NSL NSL 600	$\begin{array}{c} 380 \\ \hline \\ 6 \\ < 0.1 \\ 1 \\ 1 \\ < 0.05 \\ < 1 \\ 6 \\ \hline \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 2 \\ < 1 \\ < 1 \\ < 2 \\ < 1 \\ \end{array}$	NA NA	500 4 <0.1 16 35 <1 <0.05 <1 26 <1 26 <1 <1 <1 <1	NA 6 <0.1 1 2 <1 <0.05 <1 7 7 <1 <1 <1
Ietals and Metalloids rsenic (As III) admium hromium (total) opper aad otal Mercury (inorganic) ickel nc Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene t+p-xylene ++p-xylene t+p-xylene otal xylenes olatile Organic Compounds (VOCs), including chlc ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 0.1 1 1 0.05 1 1 1 1 1 1 2 1 1 2 0 7 1 4 0 10 10 10	10 2 50 2000 10 1 20 3000 1 800 300 NSL NSL 600	6 <0.1 1 1 <1 <0.05 <1 6 <1 <1 <1 <1 <1 <1 <2 <1 <1	NA <1	4 <0.1 16 35 <1 <0.05 <1 26 <1 <1 <1 <1 <1	6 <0.1 1 2 <1 <0.05 <1 7 <1 <1 <1
rsenic (As III) admium hromium (total) opper ead otal Mercury (inorganic) ickel inc Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene thylbenzene i+p-xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	0.1 1 1 0.05 1 1 1 1 1 1 1 2 1 2 0 0 10 10 10	2 50 2000 10 1 20 3000 1 800 300 NSL NSL 600	<0.1 1 1 <1 <0.05 <1 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NA NA NA NA NA NA C C C C C C C C C C C	<0.1 16 35 <1 <0.05 <1 26 	<0.1 1 2 <1 <0.05 <1 7 <1 <1 <1 <1
hromium (total) opper ead otal Mercury (inorganic) ickel inc Nonocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene oluene oluene thylbenzene ++p-xylene -xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 1 0.05 1 1 1 1 1 2 1 2 0 0 10 10 10 10	50 2000 10 1 20 3000 1 800 300 NSL NSL 600	1 1 <0.05 <1 6 <1 <1 <1 <1 <1 <2 <1 <1 <2 <1	NA NA NA NA NA A A A A A A A A A A A A	16 35 <1 <0.05 <1 26 <1 <1 <1 <1 <1	1 2 <1 <0.05 <1 7 <1 <1 <1 <1
opper ead otal Mercury (inorganic) ickel Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene oluene thylbenzene h+p-xylene xylene xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 1 0.05 1 1 1 1 1 2 1 2 0 0 10 10 10	2000 10 1 20 3000 1 800 300 NSL NSL 600	1 <1 <0.05 <1 6 <1 <1 <1 <1 <1 <2 <1 <2 <1	NA NA NA NA A A A A A A A A A A A A A A	35 <1 <0.05 <1 26 	2 <1 <0.05 <1 7 <1 <1 <1
ead otal Mercury (inorganic) ickel Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene thylbenzene h+p-xylene -xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 0.05 1 1 1 1 1 2 1 2 0 rinated VOCs 10 10 10	10 1 20 3000 1 800 300 NSL NSL 600	<1 <0.05 <1 6 <1 <1 <1 <1 <1 <2 <2 <1	NA NA NA <1	<1 <0.05 <1 26 	<1 <0.05 <1 7 <1 <1 <1
otal Mercury (inorganic) ickel inc Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene thylbenzene ++p-xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane hloromethane inyl Chloride romomethane	0.05 1 1 1 1 1 2 1 2 rinated VOCs 10 10 10	1 20 3000 1 800 300 NSL NSL 600	<0.05 <1 6 <1 <1 <1 <1 <1 <2 <2 <1	NA NA NA <1 <1 <1 <1 <2	<0.05 <1 26 <1 <1 <1 <1 <1	<0.05 <1 7 <1 <1 <1
inc Ionocyclic Aromatic Hydrocarbons (BTEX Compou enzene oluene thylbenzene +-yylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane hloromethane inyl Chloride romomethane	1 1 1 2 1 2 orinated VOCs 10 10 10	3000 1 800 300 NSL NSL 600	6 <1 <1 <1 <1 <2 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	NA <1 <1 <1 <1 <1 <1 <2	26 <1 <1 <1	7 <1 <1
Ionocyclic Aromatic Hydrocarbons (BTEX Compo enzene oluene htylbenzene htp-xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	Inds) 1 1 1 2 1 2 orinated VOCs 10 10 10 10	1 800 300 NSL NSL 600	<1 <1 <1 <2 <1	<1 <1 <1 <2	<1 <1 <1	<1 <1
enzene oluene thylbenzene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 1 2 1 2 0 0 10 10 10 10	800 300 NSL NSL 600	<1 <1 <2 <1	<1 <1 <2	<1 <1	<1
oluene thylbenzene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 2 1 2 0 10 10 10 10	800 300 NSL NSL 600	<1 <1 <2 <1	<1 <1 <2	<1 <1	<1
h+p-xylene -xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	2 1 2 prinated VOCs 10 10 10	NSL NSL 600	<2 <1	<2		
-xylene otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	1 2 prinated VOCs 10 10 10	NSL 600	<1		~1	<1
otal xylenes olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	2 prinated VOCs 10 10 10	600		<1	<z< td=""><td><2</td></z<>	<2
olatile Organic Compounds (VOCs), including chlo ichlorodifluoromethane hloromethane inyl Chloride romomethane	10 10 10 10		<2		<1	<1
ichlorodifluoromethane hloromethane inyl Chloride romomethane	10 10 10			<2	<2	<2
hloromethane inyl Chloride romomethane	10 10	NJL	<10	<10	<10	NA
romomethane		NSL	<10	<10	<10	NA
	10	0.3	<10	<10	<10	NA
bloroethane		NSL	<10	<10	<10	NA
	10	NSL	<10	<10	<10	NA
richlorofluoromethane	10	NSL	<10	<10	<10	NA
,1-Dichloroethene	1	30	<1	<1	<1	NA
rans-1,2-dichloroethene	1	60 NSI	<1	<1	<1	NA
,1-dichloroethane is-1,2-dichloroethene	1	NSL 60	<1 <1	<1 <1	<1 <1	NA
romochloromethane	1		<1	<1	<1	NA
hloroform	1	250	<1	<1	<1	NA
,2-dichloropropane	1	NSL	<1	<1	<1	NA
,2-dichloroethane	1	3	<1	<1	<1	NA
1,1-trichloroethane	1	NSL	<1	<1	<1	NA
1-dichloropropene	1	NSL	<1	<1	<1	NA
yclohexane	1	NSL	<1	<1	<1	NA
arbon tetrachloride enzene	1	3	<1 <1	<1 <1	<1 <1	NA
enzene ibromomethane	1	NSL	<1 <1	<1	<1	NA
,2-dichloropropane	1	NSL	<1	<1	<1	NA
richloroethene	1	NSL	<1	<1	<1	NA
romodichloromethane	1	NSL	<1	<1	<1	NA
ans-1,3-dichloropropene	1	100	<1	<1	<1	NA
s-1,3-dichloropropene	1	100	<1	<1	<1	NA
,1,2-trichloroethane	1	NSL	<1	<1	<1	NA
oluene ,3-dichloropropane	1	800 NSL	<1 <1	<1 <1	<1 <1	NA
ibromochloromethane	1	NSL	<1	<1	<1	NA
,2-dibromoethane	1	NSL	<1	<1	<1	NA
etrachloroethene	1	50	<1	<1	<1	NA
1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	NA
hlorobenzene	1	300	<1	<1	<1	NA
thylbenzene	1	300	<1	<1	<1	NA
romoform n+p-xylene	1 2	NSL NSL	<1 <2	<1 <2	<1 <2	NA
tyrene	1	30	<1	<1	<1	NA
,1,2,2-tetrachloroethane	1	NSL	<1	<1	<1	NA
-xylene	1	NSL	<1	<1	<1	NA
,2,3-trichloropropane	1	NSL	<1	<1	<1	NA
opropylbenzene	1	NSL	<1	<1	<1	NA
romobenzene	1	NSL	<1	<1	<1	NA
-propyl benzene	1	NSL	<1	<1	<1	NA
-chlorotoluene	1	NSL	<1 <1	<1	<1 <1	NA
-chlorotoluene ,3,5-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	NA
ert-butyl benzene	1	NSL	<1	<1	<1	NA
,2,4-trimethyl benzene	1	NSL	<1	<1	<1	NA
3-dichlorobenzene	1	20	<1	<1	<1	NA
ec-butyl benzene	1	NSL	<1	<1	<1	NA
,4-dichlorobenzene	1	40	<1	<1	<1	NA
-isopropyl toluene	1	NSL 1500	<1	<1	<1	NA
,2-dichlorobenzene -butyl benzene	1	1500 NSL	<1 <1	<1 <1	<1 <1	NA
-butyl benzene ,2-dibromo-3-chloropropane	1	NSL	<1 <1	<1 <1	<1	NA
,2,4-trichlorobenzene	1		<1	<1	<1	NA
,2,3-trichlorobenzene	1	30	<1	<1	<1	NA
exachlorobutadiene	1	0.7	<1	<1	<1	NA
olycyclic Aromatic Hydrocarbons (PAHs)						
aphthalene	0.2	NSL	<0.2	NA	<0.2	<0.2
cenaphthylene cenaphthene	0.1	NSL NSL	<0.1	NA	<0.1	<0.1 <0.1
luorene	0.1	NSL	<0.1	NA	<0.1	<0.1
henanthrene	0.1	NSL	<0.1	NA	<0.1	<0.1
nthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
luoranthene	0.1	NSL	<0.1	NA	<0.1	<0.1
yrene	0.1	NSL	<0.1	NA	<0.1	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1
hrysene	0.1	NSL	<0.1	NA	<0.1	<0.1
enzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2
enzo(a)pyrene	0.1	0.01	<0.1	NA	<0.1	<0.1
ideno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	NA	<0.1	<0.1
ibenzo(a,h)anthracene enzo(g,h,i)perylene	0.1	NSL NSL	<0.1	NA	<0.1	<0.1 <0.1
			-0.1			-v.1

Preliminary (Stage 1) Site Investigation (PSI) 277 The Grand Parade, Ramsgate, NSW E34871PT

TABLE G5

GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT All results in µg/L unless stated otherwise.

	PQL Envirolab	NHMRC	WHO 2008	USEPA RSL Tapwater	MW1	SAMI MW1	MW5	WDUP1
	Services	ADWG 2011		2017	IVIVI1	LAB DUP	111172	VVDUP:
Fotal Recoverable Hydrocarbons (TRH)	Services			2017		LAB DUP		
C_6 -C ₉ Aliphatics (assessed using F1)	10	-	15000	-	<10	<10	<10	<10
$\sim C_9 - C_{14}$ Aliphatics (assessed using F1)	50	_	100	-	<50	NA	<50	<50
		-	100	-	<50	NA	<50	<50
Monocyclic Aromatic Hydrocarbons (BTEX Comp		1			.1	.1	.4	.1
Benzene	1	1	-	-	<1	<1	<1	<1
Foluene	1	800	-	-	<1	<1	<1	<1
thylbenzene	1	300	-	-	<1	<1	<1	<1
Total xylenes	2	600	-	-	<2	<2	<2	<2
Polycyclic Aromatic Hydrocarbons (PAHs)								
Naphthalene	1	-	-	6.1	<1	<1	<1	<1
/olatile Organic Compounds (VOCs), including c	hlorinated V	DCs						
Dichlorodifluoromethane	10	-	-	-	<10	<10	<10	NA
Chloromethane	10	-	-	-	<10	<10	<10	NA
/inyl Chloride	10	0.3	-	-	<10	<10	<10	NA
Bromomethane	10	-	-	-	<10	<10	<10	NA
Chloroethane	10	-	-	-	<10	<10	<10	NA
Frichlorofluoromethane	10	-	-	-	<10	<10	<10	NA
L,1-Dichloroethene	1	30	-	-	<1	<1	<1	NA
Trans-1,2-dichloroethene	1	60	-	-	<1	<1	<1	NA
L,1-dichloroethane	1	-	-	-	<1	<1	<1	NA
Cis-1,2-dichloroethene	1	60	-	-	<1	<1	<1	NA
Bromochloromethane	1	250	-	-	<1	<1	<1	NA
Chloroform	1		-	-	<1	<1	<1	NA
2,2-dichloropropane	1	-	-	-	<1	<1	<1	NA
L,2-dichloroethane	1	3	-	-	<1	<1	<1	NA
L,1,1-trichloroethane	1	-	-	-	<1	<1	<1	NA
l,1-dichloropropene	1	-	-	-	<1	<1	<1	NA
Cyclohexane	1	-	-	-	<1	<1	<1	NA
Carbon tetrachloride	1	3	-	-	<1	<1	<1	NA
	1	1	_	-	<1	<1	<1	NA
Benzene								
Dibromomethane	1	-	-	-	<1	<1	<1	NA
L,2-dichloropropane	1	-	-	-	<1	<1	<1	NA
Frichloroethene	1	-	-	-	<1	<1	<1	NA
Bromodichloromethane	1	-	-	-	<1	<1	<1	NA
rans-1,3-dichloropropene	1	100	-	-	<1	<1	<1	NA
sis-1,3-dichloropropene	1	100	-	-	<1	<1	<1	NA
1,1,2-trichloroethane	1	-	-	-	<1	<1	<1	NA
Toluene	1	800	-	-	<1	<1	<1	NA
L,3-dichloropropane	1	-	-	-	<1	<1	<1	NA
Dibromochloromethane	1	-	-	-	<1	<1	<1	NA
1,2-dibromoethane	1	-	-	-	<1	<1	<1	NA
Fetrachloroethene	1	50	-	-	<1	<1	<1	NA
L,1,1,2-tetrachloroethane	1	-	-	-	<1	<1	<1	NA
	1	300	-	-				
Chlorobenzene					<1	<1	<1	NA
thylbenzene	1	300	-	-	<1	<1	<1	NA
Bromoform	1	-	-	-	<1	<1	<1	NA
n+p-xylene	2	-	-	-	<2	<2	<2	NA
ityrene	1	30	-	-	<1	<1	<1	NA
1,1,2,2-tetrachloroethane	1	-	-	-	<1	<1	<1	NA
p-xylene	1	-	-	-	<1	<1	<1	NA
I,2,3-trichloropropane	1	-	-	-	<1	<1	<1	NA
sopropylbenzene	1	-	-	-	<1	<1	<1	NA
Bromobenzene	1	-	-	-	<1	<1	<1	NA
n-propyl benzene	1	-	-	-	<1	<1	<1	NA
2-chlorotoluene	1	-	-	-	<1	<1	<1	NA
l-chlorotoluene	1	-	-	_	<1	<1	<1	NA
L,3,5-trimethyl benzene	1	_	_	_	<1	<1	<1	NA
Fert-butyl benzene	1	_	_	_	<1	<1	<1	NA
L,2,4-trimethyl benzene	1	-	-	-	<1	<1	<1	NA
L,2,4-trimethyl benzene	1	- 20	-	-	<1 <1	<1 <1	<1	NA
,	1	- 20	-	-	<1 <1	<1 <1	<1	
Sec-butyl benzene								NA
L,4-dichlorobenzene	1	40	-	-	<1	<1	<1	NA
l-isopropyl toluene	1	-	-	-	<1	<1	<1	NA
L,2-dichlorobenzene	1	1500	-	-	<1	<1	<1	NA
n-butyl benzene	1	-	-	-	<1	<1	<1	NA
L,2-dibromo-3-chloropropane	1	-	-	-	<1	<1	<1	NA
L,2,4-trichlorobenzene	1	30	-	-	<1	<1	<1	NA
,,	1		-	-	<1	<1	<1	NA
l,2,3-trichlorobenzene	-							

TABLE Q2

		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthen	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cen	Benzo(g,h,i)perylene	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel
	PQL Envirolab SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1
	PQL Envirolab VIC	10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1
Intra	MW1	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	6	<0.1	1	1	<1	<0.05	<1
laboratory	WDUP1	<10	-	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	6	<0.1	1	2	<1	< 0.05	<1
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	6	nc	1	1.5	nc	nc	nc
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	nc	0%	67%		nc	nc
Field	TB-W1	NA	NA	NA	NA	<1	<1	<1	<2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Blank	5/05/2022																															
Trip	TS-W1	-	-	-	-	73%	80%	99%	95%	98%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Appendix D: Borehole Logs

	Clier												
	Proje Loca	ect: ition:						VELOPMENT ISGATE, NSW					
Γ.	Job	No.: 3	4871PH				Me	thod: SPIRAL AUGER		R.	L. Sur	face: ~	~2.9 m
		: 2/5/2					_				atum:	AHD	
	Plant	t Type:	: JK400)		1	Lo	gged/Checked By: T.F./A.J	.H.				
Groundwater	SAN ES ES		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION		Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
							-	ASPHALTIC CONCRETE: 30mm.t FILL: Sandy gravel, fine to medium grained, igneous, grey, with silt.	_/	D			- SCREEN: 6.04kg - 0.15-1.6m, NO FCF
c c			N = 22 6,14,8	2-	-			FILL: Sand, fine to medium grained, grey, trace of fine to medium grained igneous gravel, silt, and concrete fragments.					- APPEARS - WELL - COMPACTED - -
					1-		SP	SAND: fine to medium grained, grey brown, trace of silt.		М	L		- MARINE - - -
			N = 6 5,3,3	1-	2-			SAND: fine to medium grained, light grey, trace of shell fragments.		w			-
					- - - 3-					vv	MD		
01 Dargei Lab and in Situ Tool - DGD Lib: UK 9.02			N = 18 5,6,12								D		-
< < < > 04/01/20/24 13:15 10:01.00.01 > 00:01 			N - 00	-1	4						U		-
FTI KAMOGALE.GFJ SSUIAWIN			N = 38 9,16,22	-2-	5-								-
124 LID.GLD LOG JN AUGENTICLE - MASTEN 34071711 KAMSUATE.GFJ			N = 21 5,10,11	-3	6-						MD		- GROUNDWATER - MONITORING WELL - INSTALLED TO 6.0m. - CLASS 18 MACHINE - SLOTTED 50mm DIA. PVC - STANDPIPE 3.0m TO - 6.0m. CASING 0m TO - 3.0m. 2mm SAND FILTER - PACK 0.7m TO 6.0m. - BENTONITE SEAL 0.1m - TO 0.7m. COMPLETED - WITH A CONCRETED - WITH A CONCRETED - GATIC COVER.
	PYRI			-4				END OF BOREHOLE AT 7.00 m					-

	Clie	ent:		GOOD	літ (IE H	OLDIN	IGS NS	SW				
	Pro	ject:		PROP	OSE	MIX	ED US	SE DE	VELOPMENT				
	Loc	atior	ו:	277 G	RAN	D P/	ARADE	E, RAM	ISGATE, NSW				
	Job	No.:	34	4871PH				Me	thod: SPIRAL AUGER	R.	L. Sur	face: [,]	~3.1 m
	Dat	e: 2/	5/22	2						Da	atum:	AHD	
	Plai	nt Ty	pe:	JK400				Log	gged/Checked By: T.F./A.J.H	Ι.			
Groundwater	ES 6		s s	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
					3-	-		-	ASPHALTIC CONCRETE: 30mm.t	D			-
						- - 1		25	grained, igneous, grey, with silt. FILL: Sand, fine to medium grained, grey, trace of fine grained igneous gravel, silt, and concrete fragments. FILL: Sand, fine to medium grained, grey and orange brown, trace of fine to medium grained igneous gravel and terracotta fragments.				- - - - - - - - - - - - - - - - - - -
						- - - 2		SP	FILL: Sand, fine to medium grained, grey, trace of silt and fine grained igneous gravel. SAND: fine to medium grained, light grey. END OF BOREHOLE AT 2.00 m	M			- MARINE
					-	- - - 3—							
					0	- - - 4 —							
					-1 - - - -2	- - - 5-							- - - - - - - - - -
		RIGHT			-3 -3 -	- - 6 - - -							

IK 0 00

С	lient:	GOOD		IE H	OLDIN	GS N	SW				
P	roject:	PROP	OSE	MD	KED US	E DE	VELOPMENT				
L	ocation:	277 GI	RAN	D P/	ARADE	, RAM	ISGATE, NSW				
J	ob No.: 34	4871PH				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~2.7 m
D	ate: 2/5/22	2						Da	atum:	AHD	
P	lant Type:	JK400				Lo	gged/Checked By: T.F./A.J.H	•			
Groundwater Record	SAMPLES SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON GROU		Field				- Continue of the second secon	ASPHALTIC CONCRETE: 30mm.t FILL: Sandy gravel, fine to medium grained, igneous, grey. FILL: Sand, fine to medium grained, igneous gravel, and silt. SAND: fine to medium grained, light grey. END OF BOREHOLE AT 1.20 m	Rent Conception of Conception	Stree Rei L	Hance	
			-3 - - -4	- 6 - - -							
	YRIGHT		-								-

Project: PROPOSE MIXED USE DEVELOPMENT Location: 277 GRAND PARADE, RAMSGATE, NSW Job No: 34871PH Method: SPIRAL AUGER R.L. Surface: ~2.6 m Datum: AHD Plant Type: JK400 Logged/Checked By: T.F./A.J.H. <u>SAMPLES</u> <u>B</u>		Clie	ent:		GOOD) TIM	1E H	OLDIN	GS NS	SW				
Job No.: 34871PH Date: 2/5/22 Method: SPIRAL AUGER R.L. Surface: ~2.6 m Plant Type: JK400 Logged/Checked By: T.F./A.J.H. Image: SMPLES Image: Small of the state of th		Pro	ject		PROP	OSE	MIX	ED US	SE DE	VELOPMENT				
Date: 25/22 Datum: AHD Plant Type: JK400 Logged/Checked By: T.F./A.J.H. Image: SumPLES Image: Stress of the	1	-00	catio	n:	277 GI	RAN	D P/	ARADE	E, RAM	ISGATE, NSW				
Plant Type: JK400 Logged/Checked By: T.F./A.J.H. Mamples seg i<		Jok	o No.	: 34	4871PH				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~2.6 m
SAMPLES Statution Statution Statution Statution Statution Image broad Ima	1	Dat	t e: 2/	5/22	2						Da	atum:	AHD	
0 - - ASPHALTIC CONCRETE: 30mmt M 2 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - SP SAND: fine to medium grained, light grained gneous gravel, and sit. M 1 - - SP SAND: fine to medium grained, light grained gneous gravel, and sit. M 1 - - - - - 1 - - - - 1 - - - - 2 - - - - 3 - - - - - - - - - - - - - - - - - - - - - -	1	Pla	nt Ty	/pe:	JK400				Lo	gged/Checked By: T.F./A.J.H	Ι.			
Image: Second	Groundwater	FS 0		ES SD	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
									-	FILL: Sandy gravel, fine to medium grained, igneous, grey. FILL: Sand, fine to medium grained, grey, with silt, trace of fine to medium grained igneous gravel. FILL: Sand, fine to medium grained, light grey brown, trace of fine to medium grained igneous gravel, and silt. SAND: fine to medium grained, light grey.	M			

	lier roje	nt: ect:				OLDIN KED US		SW VELOPMENT				
L	oca	tion:	277 G	RAN	DP	ARADE	, RAM	ISGATE, NSW				
			4871PF	1			Ме	thod: SPIRAL AUGER			face:	~3.0 m
D	ate	: 2/5/2	2						Da	atum:	AHD	
Ρ	lant	t Type:	JK400)			Lo	gged/Checked By: T.F./A.J.H	Ι.			
Groundwater Record	SAN ES		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
								CONCRETE: 160mm.t				- 7mm DIA. STEEL ∃ REINFORCEMENT,
				-	-		-	FILL: Sandy gravel, fine to medium \grained, igneous, grey, with silt.	м			- 72mm & 89mm TOP - COVER
			N = 9 2,5,4	2-	1-			FILL: Sand, fine to medium grained, grey and light brown, trace of fine to medium grained igneous gravel, silt, and concrete fragments.				APPEARS MODERATELY COMPACTED
				-	-		SP	SAND: fine to medium grained, light grey, trace of shell fragments.	м	L		MARINE
				1	2-				W	MD		- - - - - - - - - -
			N = 20 6,9,11	- 0	3-							
				-1- - - -	4					(D)		
				-2 	5					(MD)		GROUNDWATER MONITORING WELL INSTALLED TO 6.0m.
				-3	6			SAND: fine to medium grained, grey and dark grey, trace of silt and shell	-	(L)		 CLASS 18 MACHINE SLOTTED 50mm DIA. PV0 STANDPIPE 3.0m TO 6.0m. CASING 0m TO 3.0m. 2mm SAND FILTER PACK 1.8m TO 6.0m. BENTONITE SEAL 0.1m TO 1.8m. COMPLETED
				-	-			fragments. END OF BOREHOLE AT 7.00 m				GATIC COVER.

	Client: GOOD TIME HOLDINGS NSW							SW					
	Pro	ject:	PROP	OSE	MIX	KED US	SE DEVELOPMENT						
	Loc	ation:	277 GI	RAN	D P/	ARADE	E, RAM	, RAMSGATE, NSW					
	Job	No.:	34871PH				Ме	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~3.2 m	
	Dat	: e: 2/5/	/22						Da	atum:	AHD		
	Pla	nt Typ	e: JK400				Lo	gged/Checked By: T.F./A.J.H	•				
Groundwater	Record ES (0	AMPLES	Field Tests	RL (m AHD) Depth (m) Classification Classification		DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks			
							SP	ASPHALTIC CONCRETE: 30mm.t FILL: Silty gravel. fine to medium grained, igneous, grey. FILL: Silty sand, fine to medium grained, dark grey, with fine to medium grained igneous gravel, trace of ash. SAND: fine to medium grained, light grey brown, trace of silt. END OF BOREHOLE AT 2.00 m	M M M				
		RIGHT			_							-	

Project: PROPOSE MIXED USE DEVELOPMENT Location: 277 GRAND PARADE, RAMSGATE, NSW Job No: 34871PH Method: SPIRAL AUGER R.L. Surface: ~2.7 m Date: 2/5/22 Datum: AHD Plant Type: JK400 Logged/Checked By: T.F./A.J.H. <u>Name Samples</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>solutions</u> <u>sol</u>		Clie	nt:		GOOD	GOOD TIME HOLDINGS NSW									
Job No.: 34871PH Method: SPIRAL AUGER R.L. Surface: ~2.7 m Date: 2/5/22 Datum: AHD Plant Type: JK400 Logged/Checked By: T.F./A.J.H. Mathematical Spin Spin Spin Spin Spin Spin Spin Spin		Pro	ject:		PROP										
Date: 25/22 Datum: Charment Plant Type: JK400 Logged/Checked By: T.F./A.J.H. Mamples samples opposite oppos		Loc	atior):	277 GF	277 GRAND PARADE, RAMSGATE, NSW									
Plant Type: JK400 Logged/Checked By: T.F./A.J.H.	Job No.: 34871PH Method:								Me	thod: SPIRAL AUGER	od: SPIRAL AUGER R.L. Surface: ~2.7 m				
SAMPLES samples <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Da</th><th>atum:</th><th>AHD</th><th></th></t<>											Da	atum:	AHD		
Notice Control		Plar	nt Ty	pe:	JK400				Log	gged/Checked By: T.F./A.J.H					
Notice Control	Groundwater	Record ES / 9	MPLE	s	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
								Gr	-	FILL: Sandy gravel, fine to medium grained, igneous, grey. FILL: Sand, fine to medium grained, grey brown, with silt, trace of fine to medium grained igneous gravel. SAND: fine to medium grained, light grey and grey brown, trace of silt.	M			-	

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤12		
Soft (S)	> 25 and \leq 50	> 12 and \leq 25		
Firm (F)	> 50 and \leq 100	> 25 and \leq 50		
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100		
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable	– soil crumbles		

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

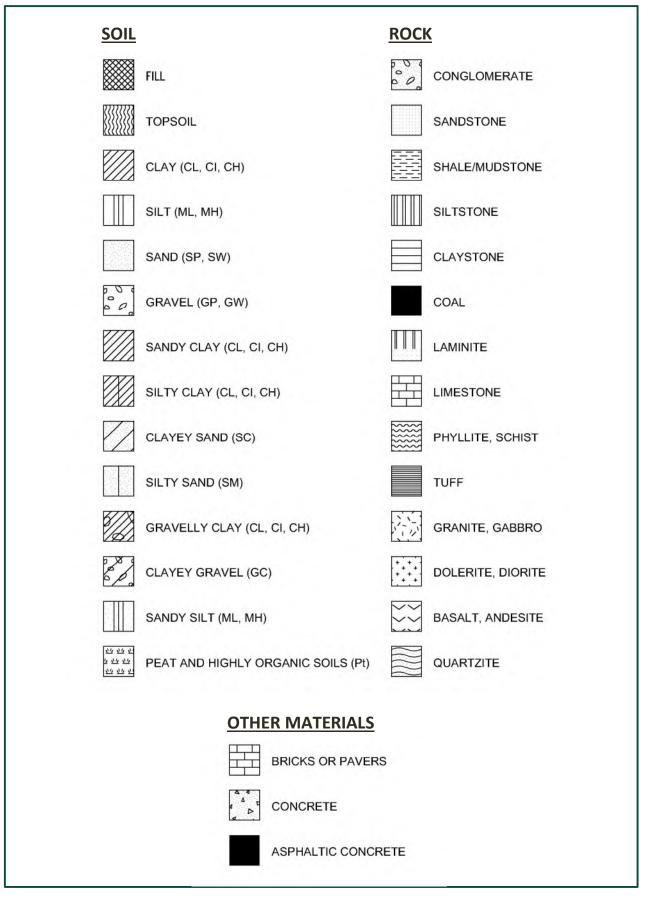
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

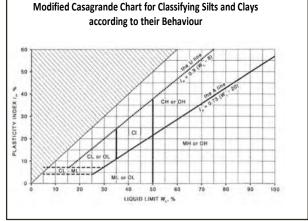
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification	
ianis	GRAVEL (more		Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>	
rsizefract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above	
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt	
65% of sail exdu than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay	
re than 65% greater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>	
iai (mare gn	of coarse fraction is smaller than	fraction	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Coarse grained soil (more than 63% of soil excluding oversize fraction is greater than 0.075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty		
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A	

		Group			Laboratory Classification					
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm			
alpr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line			
ained soils (more than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line			
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line			
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line			
oils (m e fracti	(high plasticity)	(high plasticity)	(high plasticity)	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
inegrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line			
.≝ Highly organic soil Pt Peat, highly organic soil -			-	-	-	-				

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.					
	— с —	Extent of borehole/test pit collapse shortly after drilling/excavation.					
		Groundwater seepage into borehole or test pit noted during drilling or excavation.					
Samples	ES	Sample taken over depth indicated, for environmental analysis.					
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.					
	DB	Bulk disturbed sample taken over depth indicated.					
	DS	Small disturbed bag sample taken over depth indicated.					
	ASB	Soil sample taken over depth indicated, for asbestos analysis.					
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.					
	SAL	Soil sample taken over depth indicated, for salinity analysis.					
	PFAS	Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroalkyl Substances.					
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.					
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.					
	VNS = 25	Vane shear reading in kPa of undrained shear strength.					
	PID = 100	Photoionisation detector reading in ppm (soil sample headspace test).					
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.					
(Fine Grained Soils)	$w \approx PL$	Moisture content estimated to be approximately equal to plastic limit.					
	w < PL	Moisture content estimated to be less than plastic limit.					
	w≈LL	Moisture content estimated to be near liquid limit.					
	w > LL	Moisture content estimated to be wet of liquid limit.					
(Coarse Grained Soils)	D	DRY – runs freely through fingers.					
	М	MOIST – does not run freely but no free water visible on soil surface.					
	W	WET – free water visible on soil surface.					
Strength (Consistency)	VS	VERY SOFT – unconfined compressive strength \leq 25kPa.					
Cohesive Soils	S	SOFT – unconfined compressive strength > 25kPa and \leq 50kPa.					
	F	FIRM – unconfined compressive strength > 50kPa and \leq 100kPa.					
	St	STIFF – unconfined compressive strength > 100kPa and \leq 200kPa.					
	VSt	VERY STIFF – unconfined compressive strength > 200kPa and \leq 400kPa.					
	Hd	HARD – unconfined compressive strength > 400kPa.					
	Fr	FRIABLE – strength not attainable, soil crumbles.					
	()	Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.					
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)					
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 0-4					
	L	LOOSE > 15 and \leq 35 4 - 10					
	MD	MEDIUM DENSE > 35 and ≤ 65 10 - 30					
	D	DENSE > 65 and ≤ 85 30 - 50					
	VD	VERY DENSE > 85 > 50					
	()	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.					

Log Column	Symbol	Definition			
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.			
Remarks	'V' bit	Hardened steel '\	/' shaped bit.		
	'TC' bit	Twin pronged tungsten carbide bit.			
	T_{60}	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.			
	Soil Origin	The geological or	igin of the soil can generally be described as:		
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 		
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 		
		ALLUVIAL	 soil deposited by creeks and rivers. 		
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 		
		MARINE	 soil deposited in a marine environment. 		
		AEOLIAN	 soil carried and deposited by wind. 		
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 		
		LITTORAL	 beach deposited soil. 		

Classification of Material Weathering

Term		Abbre	viation	Definition		
Residual Soil	R	S	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.			
Extremely Weathered	x	W	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.			
Highly Weathered	Distinctly Weathered	,		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered	SW		Rock is partially discoloured with staining or bleaching along joints but show little or no change of strength from fresh rock.			
Fresh	FR		Rock shows no sign of decomposition of individual minerals or colour changes.			

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix E: Laboratory Report(s) & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 294592

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E34871PT, Ramsgate
Number of Samples	28 Soil, 1 Water
Date samples received	03/05/2022
Date completed instructions received	03/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

10/05/2022

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager

Josh Williams, Organics and LC Supervisor

Lucy Zhu, Asbestos Supervisor Steven Luong, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022	06/05/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	81	75	74	86	72
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		294592-18	294592-23	294592-26	294592-27	294592-28
Your Reference	UNITS	BH6	BH7	SDUP1	ТВ	TS
Depth		0.15-0.25	0.15-0.25	-	-	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	05/05/2022	06/05/2022
TRH C ₆ - C ₉						
	mg/kg	<25	<25	<25	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg mg/kg	<25 <25	<25 <25	<25 <25	<25 <25	[NA] [NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	[NA]
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg mg/kg	<25 <25	<25 <25	<25 <25	<25 <25	[NA] [NA]
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	mg/kg mg/kg mg/kg	<25 <25 <0.2	<25 <25 <0.2	<25 <25 <0.2	<25 <25 <0.2	[NA] [NA] 103%
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene	mg/kg mg/kg mg/kg mg/kg	<25 <25 <0.2 <0.5	<25 <25 <0.2 <0.5	<25 <25 <0.2 <0.5	<25 <25 <0.2 <0.5	[NA] [NA] 103% 103%
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	<25 <25 <0.2 <0.5 <1	<25 <25 <0.2 <0.5 <1	<25 <25 <0.2 <0.5 <1	<25 <25 <0.2 <0.5 <1	[NA] [NA] 103% 103% 104%
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	<25 <25 <0.2 <0.5 <1 <2	<25 <25 <0.2 <0.5 <1 <2	<25 <25 <0.2 <0.5 <1 <2	<25 <25 <0.2 <0.5 <1 <2	[NA] [NA] 103% 103% 104% 103%
TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<25 <25 <0.2 <0.5 <1 <2 <1	<25 <25 <0.2 <0.5 <1 <2 <1	<25 <25 <0.2 <0.5 <1 <2 <1	<25 <25 <0.2 <0.5 <1 <2 <1	[NA] [NA] 103% 103% 104% 103% 103%

Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	5/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022	06/05/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	86	85	94	85

svTRH (C10-C40) in Soil					
Our Reference		294592-18	294592-23	294592-26	294592-27
Your Reference	UNITS	BH6	BH7	SDUP1	ТВ
Depth		0.15-0.25	0.15-0.25	-	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	5/05/2022	05/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	89	89	85	88

PAHs in Soil						
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022	08/05/2022	08/05/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.1	0.3	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.1	<0.05	0.1	0.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	118	128	111	126	120

PAHs in Soil					
Our Reference		294592-18	294592-23	294592-26	294592-27
Your Reference	UNITS	BH6	BH7	SDUP1	ТВ
Depth		0.15-0.25	0.15-0.25	-	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022	06/05/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	0.2	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.4	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.2	0.4	1.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	119	119	131	103

Organochlorine Pesticides in soil						
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022	08/05/2022	08/05/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	111	106	110	109

Organochlorine Pesticides in soil				
Our Reference		294592-18	294592-23	294592-26
Your Reference	UNITS	BH6	BH7	SDUP1
Depth		0.15-0.25	0.15-0.25	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	105	115

Organophosphorus Pesticides in Soil					_	
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022	08/05/2022	08/05/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	111	106	110	109

Organophosphorus Pesticides in Soil				
Our Reference		294592-18	294592-23	294592-26
Your Reference	UNITS	BH6	BH7	SDUP1
Depth		0.15-0.25	0.15-0.25	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	105	115

PCBs in Soil						
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022	08/05/2022	08/05/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	111	106	110	109

PCBs in Soil				
Our Reference		294592-18	294592-23	294592-26
Your Reference	UNITS	BH6	BH7	SDUP1
Depth		0.15-0.25	0.15-0.25	-
Date Sampled		2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	08/05/2022	08/05/2022	08/05/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	105	115

Acid Extractable metals in soil						
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	41	14	21	71	40
Copper	mg/kg	27	26	20	30	25
Lead	mg/kg	20	36	21	5	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	37	13	19	68	39
Zinc	mg/kg	65	96	67	45	56

Acid Extractable metals in soil							
Our Reference		294592-18	294592-23	294592-26	294592-27	294592-30	
Your Reference	UNITS	BH6	BH7	SDUP1	ТВ	BH1 - [TRIPLICATE]	
Depth		0.15-0.25	0.15-0.25	-	-	0.15-0.25	
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022	02/05/2022	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022	
Date analysed	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022	
Arsenic	mg/kg	<4	<4	<4	<4	<4	
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4	
Chromium	mg/kg	65	7	41	2	34	
Copper	mg/kg	36	27	34	<1	31	
Lead	mg/kg	10	50	26	3	28	
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	
Nickel	mg/kg	61	6	38	<1	31	
Zinc	mg/kg	53	77	81	2	74	

Acid Extractable metals in soil		
Our Reference		294592-31
Your Reference	UNITS	BH7 - [TRIPLICATE]
Depth		0.15-0.25
Date Sampled		2/05/2022
Type of sample		Soil
Date prepared	-	05/05/2022
Date analysed	-	05/05/2022
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	11
Copper	mg/kg	49
Lead	mg/kg	38
Mercury	mg/kg	<0.1
Nickel	mg/kg	9
Zinc	mg/kg	78

Moisture					_	
Our Reference		294592-1	294592-5	294592-9	294592-12	294592-15
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.15-0.25	0.15-0.25	0.15-0.25	0.2-0.3	0.16-0.3
Date Sampled		02/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022	06/05/2022
Moisture	%	3.2	3.8	5.9	5.7	13
Moisture						
Our Reference		294592-18	294592-23	294592-26	294592-27	
Your Reference	UNITS	BH6	BH7	SDUP1	ТВ	
Depth		0.15-0.25	0.15-0.25	-	-	
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	05/05/2022	05/05/2022	05/05/2022	05/05/2022	
Date analysed	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022	
Moisture	%	8.0	11	3.6	0.3	

Asbestos ID - soils NEPM - ASB-001						
Our Reference		294592-2	294592-6	294592-9	294592-12	294592-16
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.3-0.5	0.8-1.0	0.15-0.25	0.2-0.3	0.3-0.5
Date Sampled		2/05/2022	2/05/2022	2/05/2022	2/05/2022	2/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
Sample mass tested	g	378.17	463.08	323.97	603.81	440.59
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Grey fine-grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Chrysotile asbestos detected Amosite asbestos detected Crocidolite asbestos detected Organic Fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	0.1846	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	See Above	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	0.0855	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	0.0185	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001			
Our Reference		294592-19	294592-24
Your Reference	UNITS	BH6	BH7
Depth		0.3-0.5	0.3-0.5
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date analysed	-	10/05/2022	10/05/2022
Sample mass tested	g	526.25	735.53
Sample Description	-	Grey fine-grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	Chrysotile asbestos detected Organic Fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	0.7923	<0.1
Asbestos ID in soil <0.1g/kg*	-	See Above	No visible asbestos detected
ACM >7mm Estimation*	g	0.4170	_
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	0.0792	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

vTRH(C6-C10)/BTEXN in Water		
Our Reference		294592-29
Your Reference	UNITS	FR
Depth		-
Date Sampled		2/05/2022
Type of sample		Water
Date extracted	-	04/05/2022
Date analysed	-	05/05/2022
TRH C ₆ - C ₉	μg/L	62
TRH C ₆ - C ₁₀	μg/L	62
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	62
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	97
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	100

svTRH (C10-C40) in Water		
Our Reference		294592-29
Your Reference	UNITS	FR
Depth		-
Date Sampled		2/05/2022
Type of sample		Water
Date extracted	-	05/05/2022
Date analysed	-	06/05/2022
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	µg/L	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	79

PAHs in Water		
Our Reference		294592-29
Your Reference	UNITS	FR
Depth		-
Date Sampled		2/05/2022
Type of sample		Water
Date extracted	-	05/05/2022
Date analysed	-	05/05/2022
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	82

Metals in Water - Dissolved		
Our Reference		294592-29
Your Reference	UNITS	FR
Depth		-
Date Sampled		2/05/2022
Type of sample		Water
Date digested	-	05/05/2022
Date analysed	-	06/05/2022
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	0.07
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	294592-5
Date extracted	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			06/05/2022	1	06/05/2022	06/05/2022		06/05/2022	06/05/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	90	88
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	90	88
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	72	72
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	81	80
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	95	92
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	100	98
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	97	94
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	130	1	81	78	4	82	80

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	23	05/05/2022	05/05/2022			[NT]
Date analysed	-			[NT]	23	06/05/2022	06/05/2022			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	23	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	23	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	23	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	23	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	23	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	23	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	23	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	23	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	23	81	77	5	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate			Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	294592-5
Date extracted	-			05/05/2022	1	5/05/2022	5/05/2022		05/05/2022	05/05/2022
Date analysed	-			05/05/2022	1	06/05/2022	06/05/2022		06/05/2022	06/05/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	107	83
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	117	67
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	70	117
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	107	83
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	117	67
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	70	117
Surrogate o-Terphenyl	%		Org-020	97	1	85	83	2	123	86

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	23	05/05/2022	05/05/2022			
Date analysed	-			[NT]	23	06/05/2022	06/05/2022			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	23	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	23	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	23	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	23	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	23	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	23	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	23	89	85	5	[NT]	[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	294592-5
Date extracted	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			08/05/2022	1	08/05/2022	08/05/2022		08/05/2022	08/05/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	89
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	100	97
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	112
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	125	117
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	79
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	112	94
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	123	1	118	125	6	121	113

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	23	05/05/2022	05/05/2022			[NT]
Date analysed	-			[NT]	23	08/05/2022	08/05/2022			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	23	0.2	<0.1	67		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	23	0.1	0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	23	0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	23	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	23	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	23	119	125	5		[NT]

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	294592-5
Date extracted	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			08/05/2022	1	08/05/2022	08/05/2022		08/05/2022	08/05/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	76
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	81
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	101
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	102
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	109
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	107
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	86
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	94
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	86
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	106	1	111	108	3	107	104

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	23	05/05/2022	05/05/2022			[NT]
Date analysed	-			[NT]	23	08/05/2022	08/05/2022			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	23	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	23	105	112	6		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	294592-5
Date extracted	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			08/05/2022	1	08/05/2022	08/05/2022		08/05/2022	08/05/2022
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	80
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	81	69
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	63
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	79	67
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	78
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	82
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	75
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	106	1	111	108	3	107	104

QUALITY CONTRO	L: Organopł	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				23	05/05/2022	05/05/2022			[NT]
Date analysed	-				23	08/05/2022	08/05/2022			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		23	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		23	105	112	6		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	294592-5
Date extracted	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			08/05/2022	1	08/05/2022	08/05/2022		08/05/2022	08/05/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	104	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	106	1	111	108	3	107	104

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	23	05/05/2022	05/05/2022			
Date analysed	-			[NT]	23	08/05/2022	08/05/2022			
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	23	<0.1	<0.1	0		
Surrogate TCMX	%		Org-021	[NT]	23	105	112	6		

Atten preparedate analysedrsenicmg/kg4Metals-020admiummg/kg0.4Metals-020hromiummg/kg1Metals-020oppermg/kg1Metals-020						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	294592-5
Date prepared	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Date analysed	-			05/05/2022	1	05/05/2022	05/05/2022		05/05/2022	05/05/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	92	114
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	88	88
Chromium	mg/kg	1	Metals-020	<1	1	41	39	5	84	96
Copper	mg/kg	1	Metals-020	<1	1	27	43	46	86	126
Lead	mg/kg	1	Metals-020	<1	1	20	31	43	86	112
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	119
Nickel	mg/kg	1	Metals-020	<1	1	37	38	3	87	90
Zinc	mg/kg	1	Metals-020	<1	1	65	91	33	92	116

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	23	05/05/2022	05/05/2022			[NT]
Date analysed	-			[NT]	23	05/05/2022	05/05/2022			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	23	<4	<4	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	23	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	23	7	9	25		[NT]
Copper	mg/kg	1	Metals-020	[NT]	23	27	28	4		[NT]
Lead	mg/kg	1	Metals-020	[NT]	23	50	27	60		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	23	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	23	6	8	29		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	23	77	59	26	[NT]	[NT]

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate Spike Rec					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			05/05/2022	29	04/05/2022	05/05/2022		04/05/2022	
Date analysed	-			06/05/2022	29	05/05/2022	06/05/2022		05/05/2022	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	29	62	60	3	117	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	29	62	70	12	117	
Benzene	μg/L	1	Org-023	<1	29	<1	<1	0	122	
Toluene	µg/L	1	Org-023	<1	29	<1	<1	0	113	
Ethylbenzene	µg/L	1	Org-023	<1	29	<1	<1	0	117	
m+p-xylene	µg/L	2	Org-023	<2	29	<2	<2	0	117	
o-xylene	µg/L	1	Org-023	<1	29	<1	<1	0	113	
Naphthalene	µg/L	1	Org-023	<1	29	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	96	29	97	99	2	100	
Surrogate toluene-d8	%		Org-023	97	29	98	97	1	100	
Surrogate 4-BFB	%		Org-023	101	29	100	103	3	98	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			05/05/2022	[NT]		[NT]	[NT]	05/05/2022	
Date analysed	-			05/05/2022	[NT]		[NT]	[NT]	05/05/2022	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94	
Surrogate o-Terphenyl	%		Org-020	114	[NT]		[NT]	[NT]	99	

QUALIT	Y CONTROL	.: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	294592-29
Date extracted	-			05/05/2022	[NT]		[NT]	[NT]	05/05/2022	05/05/2022
Date analysed	-			05/05/2022	[NT]		[NT]	[NT]	05/05/2022	05/05/2022
Naphthalene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	94	78
Acenaphthylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	89	77
Fluorene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	88	74
Phenanthrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	102	88
Anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	88	76
Pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	95	81
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	77	67
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	74	76
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	78	[NT]		[NT]	[NT]	84	74

QUALITY CON	QUALITY CONTROL: Metals in Water - Dissolved						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			05/05/2022	[NT]		[NT]	[NT]	05/05/2022	
Date analysed	-			06/05/2022	[NT]		[NT]	[NT]	06/05/2022	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	104	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	101	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	100	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	99	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	101	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	106	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	102	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	107	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 294592-1 for Cu and Pb. Therefore a triplicate result has been issued as laboratory sample number 294592-30.

- The laboratory RPD acceptance criteria has been exceeded for 294592-23 for Pb. Therefore a triplicate result has been issued as laboratory sample number 294592-31.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 294592-6; Chrysotile, Amosite and Crocidolite asbestos identified in 0.5699g of fibre cement material >7mm

Sample 294592-19; Chrysotile asbestos identified in 2.7797g of fibre cement material >7mm

Note: All samples analysed as received. However, samples 294592-2,9 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E34871PT, Ramsgate
Envirolab Reference	294592
Date Sample Received	03/05/2022
Date Instructions Received	03/05/2022
Date Results Expected to be Reported	10/05/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	28 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab	Services	Pty L	.td
-----------	----------	-------	-----

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	Metals in Water - Dissolved	On Hold
BH1-0.15-0.25	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓						
BH1-0.3-0.5								\checkmark					
BH1-1.3-1.5													✓
BH1-1.8-2.0													✓
BH2-0.15-0.25	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓						
BH2-0.8-1.0								\checkmark					
BH2-1.3-1.5													✓
BH2-1.8-2.0													✓
BH3-0.15-0.25	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark					
BH3-0.3-0.5													✓
BH3-0.8-1.0													\checkmark
BH4-0.2-0.3	\checkmark	✓	✓	\checkmark	\checkmark	✓	✓	\checkmark					
BH4-0.5-0.8													✓
BH4-1.3-1.5													✓
BH5-0.16-0.3	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓						
BH5-0.3-0.5								\checkmark					
BH5-1.8-2.0													✓
BH6-0.15-0.25	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓						
BH6-0.3-0.5								\checkmark					
BH6-0.8-1.0													✓
BH6-1.3-1.5													✓
BH6-1.8-2.0													✓
BH7-0.15-0.25	✓	✓	✓	✓	✓	✓	√						
BH7-0.3-0.5								✓					
BH7-0.8-1.0													✓
SDUP1	✓	✓	✓	✓	✓	✓	√						
ТВ	✓	✓	✓				√						
TS	✓												
FR									√	✓	✓	✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

upuched coc

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u>							e-84-4 -844	1			FROM	<u>/:</u>		-				
ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET			JKE Job Number:		E34871PT	d						~						
CHATSWOOD NSW 2067			luniberr								J	KE	Env	riro	nn	ner	nts	
P: (02) 99106200				Date Results STANDARD				REAR OF 115 WICKS ROAD										
F: (02) 99106201				Required	equired: MACQUARIE					RK, NS			5001					
Attention: Ail	een			Page:		1 of 2								/lor@j		-9888 5001 conments.com.au		
Location:	Ramsg	ate		·						Sarr	ple Pr	eserv	ed in I	Esky o	n ice			
Sampler:	AD										Т	ests R	equir	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500mL)	втех								
2/05/2022	-	BH1	0.15-0.25	G, A	0	F: Sand	X											
2/05/2022	2	вні	0.3-0.5	G, A	0	F: Sand	<u> </u>		X									
2/05/2022	3	BH1	1.3-1.5	G, A	0	Sand												
2/05/2022	Y	BH1	1.8-2.0	G, A	0	Sand		 								_		
2/05/2022	\leq	BH2	0.15-0.25	G, A	0	F: Sand	X											
2/05/2022	6	BH2	0.8-1.0	G, A	0	F: Sand			X									_
2/05/2022	77	вна	1.3-1.5	G, A	0	Sand		[
2/05/2022	8	вн2	1.8-2.0	G, A	0	Sand												
2/05/2022	Ŷ	внз	0.15-0.25	G, A	0	F: Sand	X		X									
2/05/2022	Ó	внз	0.3-0.5	G, A	0	F: Sand							_					
2/05/2022	1	внз	0.8-1.0	G, A	0	Sand												
2/05/2022	12	BH4	0.2-0.3	G, A	0.1	F: Sand	X		X			n Â	JLAB		nviro 1			
2/05/2022	ß	BH4	0.5-0.8	G, A	0	F: Sand									swoo h: (02) NSV 1.901(/ 2067 1 6209	
2/05/2022	ΙY	BH4	1.3-1.5	G, A	0	Sand						<u>lob ;</u>	_			20	ļΫČ	
2/05/2022	S	вн5	0.16-0.3	G, A	0	F: Sandy Gravel	<u>x</u>					чие ь	iecen	eo:		3	si	22
2/05/2022	[b	вн5	0.3-0.5	G, A	0	F: Sand			X	•	R T	⊇cciv	ж.By	έœÇ	R			βIS
2/05/2022	17	BH5	1.8-2.0	G, A	0	Sand					Co	oling		mble	nt			
2/05/2022	18	вне	0.15-0.25	G, A	0	F: Silty Sand	X				Se	Curity	Intac	0 Bro	ion Ai	150		
2/05/2022	19	BH6	0.3-0.5	G, A	0	F: Silty Sand			X					Ĺ				_
2/05/2022	3	BH6	0.8-1.0	G, A	0	F: Silty Sand												
2/05/2022	U	вн6	1.3-1.5	G, A	0	Sand												
2/05/2022	JJ	вне	1.8-2.0	G, A	0	Sand												
2/05/2022	ر. ۲	BH7	0.15-0.25	G, A	0	F: Sand	X											
2/05/2022	24	BH7	0.3-0.5	G, A	0	Sand			X									
2/05/2022		BH7	0.8-1.0	G, A	0	Sand												
Remarks (comments/detection limits required): G - 250mg Glass A - Ziplock Asbe: P - Plastic Bag						Glass J Asbest	ar											
Relinquished By: Date:				Time	: 31°	5		Recei	ved B	γ:			Date:	รโข	٦			

			•				00	510					-	· · · · ·				
<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET			JKE Job [E34871PT] Number:															
CHATSWOOD		2067									[nn	ner	nte
P: (02) 99106				Date Res		STANDARD								CKS R				
F: (02) 99106201			Required	:								IE PAI 5000		W 211	13 -9888 -	5001		
Attention: Aileen				Page:		2 of 2	 						-		kenvir			m.au
Location:	Ramsg	ate		,						Sam	ipie Pi	reserv	ed in	Esky o	on ice			
Sampler:	AD _	,. I	1			***					ז	ests R	equir	ed -				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500mL)	ВТЕХ	SCr extended	pH field test (pHF apHFOX)						
2/05/2022	Ub	SDUP1	_	G, A	_	Soil Duplicate	Х											-
2/05/2022	27	тв		G	-	Trip Blank		X										
2/05/2022	28	тѕ		v		Trip Spike				X								
2/05/2022	24	FR	-	` #	-	Field Rinsate		X										
2/05/2022	mr.	BH1	0.3-0.5	Р		F: Sand						х						
2/05/2022	Nn	BH1	1.3-1.5	Р	1	F: Sand						x						
2/05/2022	ND	BH1	1.8-2.0	Р		Sand						x						
2/05/2022	WN-	BH1.	2.9-3.0	Р		Sand			:			х						
2/05/2022	NIL	BH1	3.9-4.0	P		Sand						х						
2/05/2022	NR	вн1	4.9-5.0	Р		Sand						х						
2/05/2022	NR	BH1	5.9-6.0	Р		Sand						х]					
2/05/2022	NR	BH1	6.9-7.0	Р		Sand						X			1			
2/05/2022	NR	вн5	0.3-0.5	Р		F: Sand						х						
2/05/2022	NN	вн5	1.3-1.5	Р		F: Sand						х						
2/05/2022	Mr_		1.8-2.0	Р		Sand						х						
2/05/2022	NR	BH5	2.9-3.0	Р		Sand						X.						
2/05/2022	NNL	BH5	3.9-4.0	Р		Sand						х						
2/05/2022	NN	вн5	4.9-5.0	Р		Sand			į			X						
2/05/2022	Nn		5.9-6.0	Р		Sand						х						
2/05/2022	1102	8#15	6.9-7.0	Р		Sand						X.						
J																		
Remarks (cor	nments	/detection li	mits required)): 			G - 2!	50mg (ntaine Glass J . Ambe	ar				stos B K vials			ass Via ottle	al
Relinquished	Ву:			Date:			Time				Recei	ved B	λ:			Date:		

SAMPLE AND CHAIN OF CUSTODY FORM

.

294592

•

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 294592-A

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E34871PT, Ramsgate
Number of Samples	additional analysis
Date samples received	03/05/2022
Date completed instructions received	18/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	25/05/2022					
Date of Issue	25/05/2022					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 294592-A Revision No: R00

Page | 1 of 17

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		294592-A-14	294592-A-21
Your Reference	UNITS	BH4	BH6
Depth		1.3-1.5	1.3-1.5
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	79

svTRH (C10-C40) in Soil			
Our Reference		294592-A-14	294592-A-21
Your Reference	UNITS	BH4	BH6
Depth		1.3-1.5	1.3-1.5
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C10 -C16	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	87	83

PAHs in Soil			
Our Reference		294592-A-14	294592-A-21
Your Reference	UNITS	BH4	BH6
Depth		1.3-1.5	1.3-1.5
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date extracted	-	19/05/2022	19/05/2022
Date analysed	-	19/05/2022	19/05/2022
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	103

Acid Extractable metals in soil			
Our Reference		294592-A-14	294592-A-21
Your Reference	UNITS	BH4	BH6
Depth		1.3-1.5	1.3-1.5
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date prepared	-	19/05/2022	19/05/2022
Date analysed	-	20/05/2022	20/05/2022
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	<1	2
Copper	mg/kg	7	2
Lead	mg/kg	2	5
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	<1	1
Zinc	mg/kg	5	15

Moisture				
Our Reference		294592-A-14	294592-A-21	
Your Reference	UNITS	BH4	BH6	
Depth		1.3-1.5	1.3-1.5	
Date Sampled		2/05/2022	2/05/2022	
Type of sample		Soil	Soil	
Date prepared	-	19/05/2022	19/05/2022	
Date analysed	-	20/05/2022	20/05/2022	
Moisture	%	17	4.1	

Metals from Leaching Fluid pH 2.9 or 5			
Our Reference		294592-A-12	294592-A-18
Your Reference	UNITS	BH4	BH6
Depth		0.2-0.3	0.15-0.25
Date Sampled		2/05/2022	2/05/2022
Type of sample		Soil	Soil
Date extracted	-	24/05/2022	24/05/2022
Date analysed	-	24/05/2022	24/05/2022
pH of soil for fluid# determ.	pH units	9.8	9.6
pH of soil TCLP (after HCl)	pH units	1.7	1.7
Extraction fluid used		1	1
pH of final Leachate	pH units	5.0	6.5
Nickel	mg/L	0.06	<0.02

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			19/05/2022	[NT]		[NT]	[NT]	19/05/2022	
Date analysed	-			20/05/2022	[NT]		[NT]	[NT]	20/05/2022	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	108	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	108	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	102	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	108	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	110	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	110	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	103	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	83	[NT]		[NT]	[NT]	92	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			19/05/2022	[NT]		[NT]	[NT]	19/05/2022	
Date analysed	-			19/05/2022	[NT]		[NT]	[NT]	19/05/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	107	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	117	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	107	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	117	
Surrogate o-Terphenyl	%		Org-020	83	[NT]	[NT]	[NT]	[NT]	82	[NT]

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			19/05/2022	[NT]		[NT]	[NT]	19/05/2022	
Date analysed	-			19/05/2022	[NT]		[NT]	[NT]	19/05/2022	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	101	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	116	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	108	[NT]		[NT]	[NT]	105	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			19/05/2022	[NT]	[NT]		[NT]	19/05/2022	
Date analysed	-			20/05/2022	[NT]	[NT]		[NT]	20/05/2022	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	85	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	83	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	86	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	85	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	84	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	107	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	84	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	83	

QUALITY CONTROL	QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5					Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			24/05/2022	[NT]		[NT]	[NT]	24/05/2022	[NT]
Date analysed	-			24/05/2022	[NT]		[NT]	[NT]	24/05/2022	[NT]
Nickel	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	104	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Samples received in good order: Holding time exceedance

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E34871PT, Ramsgate
Envirolab Reference	294592-A
Date Sample Received	03/05/2022
Date Instructions Received	18/05/2022
Date Results Expected to be Reported	25/05/2022

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Organics - out of recommended holding time

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Nickel	On Hold
BH1-0.15-0.25										\checkmark
BH1-0.3-0.5										✓
BH1-1.3-1.5										\checkmark
BH1-1.8-2.0										\checkmark
BH2-0.15-0.25										✓
BH2-0.8-1.0										\checkmark
BH2-1.3-1.5										\checkmark
BH2-1.8-2.0										\checkmark
BH3-0.15-0.25										\checkmark
BH3-0.3-0.5										\checkmark
BH3-0.8-1.0										\checkmark
BH4-0.2-0.3					✓	✓	✓	✓	✓	
BH4-0.5-0.8										\checkmark
BH4-1.3-1.5	\checkmark	✓	\checkmark	\checkmark						
BH5-0.16-0.3										\checkmark
BH5-0.3-0.5										\checkmark
BH5-1.8-2.0										\checkmark
BH6-0.15-0.25					✓	✓	✓	✓	✓	
BH6-0.3-0.5										\checkmark
BH6-0.8-1.0										\checkmark
BH6-1.3-1.5	 ✓ 	✓	\checkmark	\checkmark						
BH6-1.8-2.0										\checkmark
BH7-0.15-0.25										\checkmark
BH7-0.3-0.5										\checkmark
BH7-0.8-1.0										\checkmark
SDUP1										\checkmark
ТВ										\checkmark
TS										\checkmark
FR										\checkmark
BH1 - [TRIPLICATE]-0.15-0.25										\checkmark
BH7 - [TRIPLICATE]-0.15-0.25										\checkmark

The ' \checkmark 'indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Ming To

Subject: Attachments:	FW: Results for Registration 294592 E34871PT, Ramsgate 294592-[R00].pdf; 294592-COC.pdf; JK Environment Soil for Envirolab 294592.xlsx; 294592.Excel.xlsx
Ref: 294592-A 7A7: Standard Due: 25/05/2022	
7AT: Standard	
Dre: 25/05/2022	
MT	
 	
From: Katrina Taylor <ktaylor@< th=""><th>•</th></ktaylor@<>	•
Sent: Wednesday, 18 May 2022	
To: Samplereceipt <samplerece< th=""><th></th></samplerece<>	
Subject: FW: Results for Registra	ation 294592 E34871PT, Ramsgate
CAUTION: This email originated fro you recognise the sender and know	m outside of the organisation. Do not act on instructions, click links or open attachments unless / the content is authentic and safe.

Afternoon,

Please analyse the following samples on standard TA:

TCLP Nickel (2 BH4 (0.2-0.3) (8 BH6 (0.15-0.25)

#**3** |4 BH4 (1.3-1.5) 2/ BH6 (1.3-1.5)

Thank you.

Regards Katrina Taylor Associate | Environmental Scientist NSW Licensed Asbestos Assessor

T: +612 9888 5000 D: 0418 481 628 E: <u>KTaylor@jkenvironments.com.au</u> www.jkenvironments.com.au

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

. .. .

-

and second long

JKEnvironments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

From: Jeremy Faircloth <<u>JFaircloth@envirolab.com.au</u>> Sent: Tuesday, 10 May 2022 6:58 PM

CERTIFICATE OF ANALYSIS 294586

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E34871PT, Ramsgate
Number of Samples	16 Soil
Date samples received	03/05/2022
Date completed instructions received	03/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	10/05/2022				
Date of Issue	10/05/2022				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Jenny He, Chemist Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		294586-1	294586-2	294586-3	294586-4	294586-5
Your Reference	UNITS	BH1	BH1	BH1	BH1	BH1
Depth		0.3-0.5	1.3-1.5	1.8-2.0	2.9-3.0	3.9-4.0
Date Sampled		02/05/2022	02/05/2022	02/05/2022	02/05/2022	02/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
Date analysed	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
pH⊧ (field pH test)*	pH Units	10.0	10.0	9.4	8.9	8.5
pHFox (field peroxide test)*	pH Units	8.2	7.2	7.1	7.1	6.7
Reaction Rate*	-	High reaction	Low reaction	Low reaction	Low reaction	Low reaction

sPOCAS field test						
Our Reference		294586-6	294586-7	294586-8	294586-9	294586-10
Your Reference	UNITS	BH1	BH1	BH1	BH5	BH5
Depth		4.9-5.0	5.9-6.0	6.9-7.0	0.3-0.5	1.3-1.5
Date Sampled		02/05/2022	02/05/2022	02/05/2022	02/05/2022	02/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
Date analysed	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
pH _F (field pH test)*	pH Units	8.8	8.6	8.4	8.7	9.0
pH _{FOX} (field peroxide test)*	pH Units	6.7	6.8	6.7	7.6	6.6
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		294586-11	294586-12	294586-13	294586-14	294586-15
Your Reference	UNITS	BH5	BH5	BH5	BH5	BH5
Depth		1.8-2.0	2.9-3.0	3.9-4.0	4.9-5.0	5.9-6.0
Date Sampled		02/05/2022	02/05/2022	02/05/2022	02/05/2022	02/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
Date analysed	-	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022
pH⊧ (field pH test)*	pH Units	8.2	8.1	8.1	8.4	8.1
pH _{FOX} (field peroxide test)*	pH Units	7.1	6.0	6.3	6.5	6.6
Reaction Rate*	-	Low reaction				

sPOCAS field test		
Our Reference		294586-16
Your Reference	UNITS	BH5
Depth		6.9-7.0
Date Sampled		02/05/2022
Type of sample		Soil
Date prepared	-	10/05/2022
Date analysed	-	10/05/2022
pH⊧ (field pH test)*	pH Units	8.4
pHFOX (field peroxide test)*	pH Units	6.4
Reaction Rate*	-	Low reaction

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			[NT]	1	10/05/2022	10/05/2022		10/05/2022	[NT]
Date analysed	-			[NT]	1	10/05/2022	10/05/2022		10/05/2022	[NT]
pH _F (field pH test)*	pH Units		Inorg-063	[NT]	1	10.0	9.9	1	98	[NT]
pH _{FOX} (field peroxide test)*	pH Units		Inorg-063	[NT]	1	8.2	8.0	2	98	[NT]

QUALITY CONTROL: sPOCAS field test						Duplicate				
Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
-			[NT]	11	10/05/2022	10/05/2022				
-			[NT]	11	10/05/2022	10/05/2022				
pH Units		Inorg-063	[NT]	11	8.2	8.1	1			
pH Units		Inorg-063	[NT]	11	7.1	6.9	3			
	Units - - pH Units	Units PQL - - pH Units	Units PQL Method - - pH Units Inorg-063	Units PQL Method Blank - [NT] - [NT] pH Units Inorg-063 [NT]	Units PQL Method Blank # - [NT] 11 11 - [NT] 11 11 pH Units [NT] 11 11	Units PQL Method Blank # Base - [NT] 11 10/05/2022 - [NT] 11 10/05/2022 pH Units Image:	Units PQL Method Blank # Base Dup. - [NT] 11 10/05/2022 10/05/2022 - [NT] 11 10/05/2022 10/05/2022 pH Units [NT] 11 10/05/2022 10/05/2022	Units PQL Method Blank # Base Dup. RPD - [NT] 11 10/05/2022 10/05/2022 10/05/2022 10/05/2022 - [NT] 11 10/05/2022 10/05/2022 10/05/2022 pH Units [NT] [NT] 11 8.2 8.1 1	Units PQL Method Blank # Base Dup. RPD [NT] -	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E34871PT, Ramsgate
Envirolab Reference	294586
Date Sample Received	03/05/2022
Date Instructions Received	03/05/2022
Date Results Expected to be Reported	On Hold

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	16 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1
Cooling Method	Ice Pack, ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	sPOCAS field test	On Hold
BH1-0.3-0.5		✓
BH1-1.3-1.5		✓ ✓ ✓ ✓ ✓
BH1-1.8-2.0		\checkmark
BH1-2.9-3.0		\checkmark
BH1-3.9-4.0		\checkmark
BH1-4.9-5.0		✓
BH1-5.9-6.0		✓
BH1-6.9-7.0		✓
BH5-0.3-0.5		✓ ✓ ✓ ✓ ✓
BH5-1.3-1.5		\checkmark
BH5-1.8-2.0		\checkmark
BH5-2.9-3.0		\checkmark
BH5-3.9-4.0		
BH5-4.9-5.0		✓
BH5-5.9-6.0		\checkmark
BH5-6.9-7.0		\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Updated 2914586

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200				JKE Job Number: Date Ress		E34871PT					FROM	JKEnvironments REAR OF 115 WICKS ROAD						
F: (02) 991062 F: (02) 991062				Required	quired: MACQUARIE PARK, NSW 2113													
Attention: Alleen				Page:	Page: 2012								<u> 1120</u>					
Location:	Ramsg	até 👋 🐰	<u>Maria</u>		Sample Preserved in Esky on Ice Tests Required													
Sample <u>r:</u>	AD. 🕈			<u></u>						Ţ	r ·	- T	quire	20				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml)	BTEX	SCr extended	pH field test (pHF apHFOX)						
2/05/2022		SDUP1		Ġ, A		Soil Duplicate	X											
2/05/2022	 	T'8		G		Trip Blank		X.		$\frac{1}{2}$		-						
2/05/2022		TS		V	_	Trip Spike				X	┨			<u> </u>			┟╌╶┦	┝──┤
2/05/2022		FR		#	-	Field Rinsate		X						<u> .</u>			 	
2/05/2022	1	вні	0.3-0.5	P		F: Sand		 				X						<u> </u>
2/05/2022	2	вн1	1.3-1.5	P		F: Sand			}		┼	X		<u>.</u>		ļ		├──
2/05/2022	3	8H1	1.8-2.0	P		Sand				-		X	ļ	╂──			┝	┨───
2/05/2022	4	BH1	2.9-3.0	<u>Р</u>		Sand						X			┼──			┼—
2/05/2022	S	BH1	3.9-4.0	<u>е</u>		Sand						<u> ×</u>		<u> </u>			┢───	╆ <u></u>
2/05/2022	6	BH1	4,9-5.0	P		Sand						X		<u> </u>	┨───	<u> </u>	╂—	
2/05/2022	7	вні	5.9-6.0	P		Sand		<u> </u>				×				<u> </u>		
2/05/2022	8	BH1	6.9-7.0	P	 	Sand						×						╂
2/05/2022	9	внз	0.3-0.5	Р		F: Sand	<u> </u>				_	X	ļ	┼—	┽	<u> </u>		╂
2/05/2022	10	BH5	1.3-1.5	P		F: Sand	 	<u> </u>		-		X					┼—	+
2/05/2022	11	вн5	1.8-2.0	Р		Sand						×	<u> </u>			-	+	
2/05/2022	12	BH5	2.9-3.0	P		Sand		<u> </u>				X			-			
2/05/2022	13	вн5	3.9-4.0	Р		Sand		<u> </u>	-			X		_			+	
2/05/2022	14	BH5	4.9-5.0	Р	<u> </u>	Sand	<u> </u>	<u> </u>	+		+	<u> x</u>	-					
2/05/2022	15	вн5	5.9-6.0	P		Sand	<u> </u>		<u> </u>			<u> ×</u>						-
2/05/2022	16	BHS	6.9-7.0	P	<u> </u>	Sand	<u> </u>					<u> </u>					+	+
						-	<u> </u>		_					1.			+-	+
		·		·			-	<u> </u>		-	_ _				+	+	+	
							╄	_					┼─	_	+	+	+	
					_		ļ		_						_			
Remarks (c	ommen	its/detection	limits requir	ed):			G-	250m	ig Gla	iners: iss Jar mber	А	- Ziplo	ck As 2x B	besto: TEX vi	s Bag als, 1x		- Glass 3 bott	
Relinquish	ed By:			Date:		····	Tin	ie:	_		Re	ceived	Βγ:			Dat	te:	

Kr.

٤

CERTIFICATE OF ANALYSIS 294586-A

Client Details	
Client	JK Environments
Attention	Alexis Diodati
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E34871PT, Ramsgate
Number of Samples	additional analysis
Date samples received	03/05/2022
Date completed instructions received	18/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	26/05/2022
Date of Issue	26/05/2022
NATA Accreditation Number 290	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Chromium Suite						
Our Reference		294586-A-1	294586-A-3	294586-A-6	294586-A-10	294586-A-12
Your Reference	UNITS	BH1	BH1	BH1	BH5	BH5
Depth		0.3-0.5	1.8-2.0	4.9-5.0	1.3-1.5	2.9-3.0
Date Sampled		02/05/2022	02/05/2022	02/05/2022	02/05/2022	02/05/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	25/05/2022	25/05/2022	25/05/2022	25/05/2022	26/05/2022
Date analysed	-	25/05/2022	25/05/2022	25/05/2022	25/05/2022	26/05/2022
pH _{kcl}	pH units	10.2	9.9	9.9	9.9	7.1
s-TAA pH 6.5	%w/w S	<0.01	<0.01	<0.01	<0.01	<0.01
TAA pH 6.5	moles H+ /t	<5	<5	<5	<5	<5
Chromium Reducible Sulfur	%w/w	<0.005	<0.005	0.006	0.007	0.007
a-Chromium Reducible Sulfur	moles H ⁺ /t	<3	<3	4	4	4
S _{HCI}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Snas	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	6.4	0.35	0.90	0.25	0.25
s-ANC _{BT}	%w/w S	2.1	0.11	0.29	0.08	0.08
s-Net Acidity	%w/w S	<0.005	<0.005	<0.005	<0.005	<0.005
a-Net Acidity	moles H+ /t	<5	<5	<5	<5	<5
Liming rate	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	<0.75
a-Net Acidity without ANCE	moles H ⁺ /t	<5	<5	<5	<5	<5
Liming rate without ANCE	kg CaCO₃ /t	<0.75	<0.75	<0.75	<0.75	<0.75
s-Net Acidity without ANCE	%w/w S	<0.005	<0.005	0.0060	0.0070	0.0070

Chromium Suite			
Our Reference		294586-A-13	294586-A-16
Your Reference	UNITS	BH5	BH5
Depth		3.9-4.0	6.9-7.0
Date Sampled		02/05/2022	02/05/2022
Type of sample		Soil	Soil
Date prepared	-	25/05/2022	25/05/2022
Date analysed	-	25/05/2022	25/05/2022
рН ка	pH units	9.8	9.9
s-TAA pH 6.5	%w/w S	<0.01	<0.01
TAA pH 6.5	moles H+/t	<5	<5
Chromium Reducible Sulfur	%w/w	0.005	0.05
a-Chromium Reducible Sulfur	moles H+/t	3	29
Shci	%w/w S	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]
Snas	%w/w S	[NT]	[NT]
ANCBT	% CaCO ₃	<0.05	1.6
s-ANC _{BT}	%w/w S	<0.05	0.50
s-Net Acidity	%w/w S	0.0050	<0.005
a-Net Acidity	moles H+/t	<5	<5
Liming rate	kg CaCO₃ /t	<0.75	<0.75
a-Net Acidity without ANCE	moles H+/t	<5	29
Liming rate without ANCE	kg CaCO₃ /t	<0.75	2.2
s-Net Acidity without ANCE	%w/w S	0.0050	0.047

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.

QUALITY CONTROL: Chromium Suite				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			25/05/2022	[NT]		[NT]	[NT]	25/05/2022	
Date analysed	-			25/05/2022	[NT]		[NT]	[NT]	25/05/2022	
pH _{kcl}	pH units		Inorg-068	[NT]	[NT]		[NT]	[NT]	97	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	[NT]		[NT]	[NT]	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	[NT]		[NT]	[NT]	99	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	117	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	[NT]		[NT]	[NT]	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H⁺/t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Alexis Diodati

Sample Login Details	
Your reference	E34871PT, Ramsgate
Envirolab Reference	294586-A
Date Sample Received	03/05/2022
Date Instructions Received	18/05/2022
Date Results Expected to be Reported	25/05/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1
Cooling Method	Ice Pack, ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Sample ID	Chromium Suite	On Hold
BH1-0.3-0.5	✓	
BH1-1.3-1.5		✓
BH1-1.8-2.0	✓	
BH1-2.9-3.0		✓
BH1-3.9-4.0		✓
BH1-4.9-5.0	\checkmark	
BH1-5.9-6.0		✓
BH1-6.9-7.0		✓
BH5-0.3-0.5		✓
BH5-1.3-1.5	✓	
BH5-1.8-2.0		✓
BH5-2.9-3.0	✓	
BH5-3.9-4.0	✓	
BH5-4.9-5.0		✓
BH5-5.9-6.0		✓
BH5-6.9-7.0	\checkmark	

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

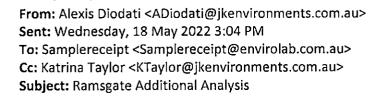
Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.


Ming To

Subject:

FW: Ramsgate Additional Analysis

Ref: 294586-13 7A7: Standard Due: 25/05/2022

294586-A

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi team,

Can I please schedule the following samples for further analysis (standard turnaround):

,	Sample Number and Depth	Lab Report/Ref	Analysis Required
١.	BH1 (0.3-0.5)	294586	Chromium reducible sulfur (Scr) suite
3.	BH1 (1.8-2.0)	294586	Chromium reducible sulfur (Scr) suite
6.	BH1 (4.9-5.0)	294586	Chromium reducible sulfur (Scr) suite
10	BH5 (1.3-1.5)	294586	Chromium reducible sulfur (Scr) suite
(2	BH5 (2.9-3.0)	294586	Chromium reducible sulfur (Scr) suite
(3	BH5 (3.9-4.0)	294586	Chromium reducible sulfur (Scr) suite
16.	BH5 (6.9-7.0)	294586	Chromium reducible sulfur (Scr) suite

Thank you!

Regards Alexis Diodati **Environmental Scientist**

T: +612 9888 5000 D: 0424 578 006 E: ADiodati@jkenvironments.com.au www.jkenvironments.com.au

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned for email related threats and delivered safely by Mimecast. For more information please visit http://www.mimecast.com

CERTIFICATE OF ANALYSIS 294828

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E34871PT, Ramsgate
Number of Samples	5 Water
Date samples received	05/05/2022
Date completed instructions received	05/05/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	12/05/2022			
Date of Issue	12/05/2022			
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Kyle Gavrily, Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 294828 Revision No: R00

Page | 1 of 18

VOCs in water			
Our Reference		294828-1	294828-2
Your Reference	UNITS	MW1	MW5
Date Sampled		05/05/2022	05/05/2022
Type of sample		Water	Water
Depth		0.2	0.4
Date extracted	-	06/05/2022	06/05/2022
Date analysed	-	09/05/2022	09/05/2022
Dichlorodifluoromethane	µg/L	<10	<10
Chloromethane	µg/L	<10	<10
Vinyl Chloride	µg/L	<10	<10
Bromomethane	µg/L	<10	<10
Chloroethane	µg/L	<10	<10
Trichlorofluoromethane	µg/L	<10	<10
1,1-Dichloroethene	µg/L	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	<1	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	µg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	µg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	µg/L	<1	<1
Tetrachloroethene	µg/L	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1
Chlorobenzene	µg/L	<1	<1

VOCs in water			
Our Reference		294828-1	294828-2
Your Reference	UNITS	MW1	MW5
Date Sampled		05/05/2022	05/05/2022
Type of sample		Water	Water
Depth		0.2	0.4
Ethylbenzene	µg/L	<1	<1
Bromoform	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
Styrene	µg/L	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1
o-xylene	µg/L	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1
Isopropylbenzene	µg/L	<1	<1
Bromobenzene	µg/L	<1	<1
n-propyl benzene	µg/L	<1	<1
2-chlorotoluene	µg/L	<1	<1
4-chlorotoluene	µg/L	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1
Tert-butyl benzene	µg/L	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1
Sec-butyl benzene	µg/L	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1
4-isopropyl toluene	µg/L	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1
n-butyl benzene	µg/L	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1
Hexachlorobutadiene	µg/L	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	96	96
Surrogate toluene-d8	%	96	97
Surrogate 4-BFB	%	105	101

vTRH(C6-C10)/BTEXN in Water						
Our Reference		294828-1	294828-2	294828-3	294828-4	294828-5
Your Reference	UNITS	MW1	MW5	WDUP1	TS-W1	TB-w1
Date Sampled		05/05/2022	05/05/2022	05/05/2022	05/05/2022	05/05/2022
Type of sample		Water	Water	Water	Water	Water
Depth		0.2	0.4	NA	NA	NA
Date extracted	-	06/05/2022	06/05/2022	06/05/2022	06/05/2022	06/05/2022
Date analysed	-	09/05/2022	09/05/2022	09/05/2022	09/05/2022	09/05/2022
TRH C ₆ - C ₉	µg/L	<10	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	[NA]	[NA]
Benzene	μg/L	<1	<1	<1	73%	<1
Toluene	μg/L	<1	<1	<1	80%	<1
Ethylbenzene	µg/L	<1	<1	<1	99%	<1
m+p-xylene	μg/L	<2	<2	<2	95%	<2
o-xylene	µg/L	<1	<1	<1	98%	<1
Naphthalene	µg/L	<1	<1	<1	[NA]	<1
Surrogate Dibromofluoromethane	%	96	96	97	99	96
Surrogate toluene-d8	%	96	97	97	100	96
Surrogate 4-BFB	%	105	101	102	101	102

svTRH (C10-C40) in Water				
Our Reference		294828-1	294828-2	294828-3
Your Reference	UNITS	MW1	MW5	WDUP1
Date Sampled		05/05/2022	05/05/2022	05/05/2022
Type of sample		Water	Water	Water
Depth		0.2	0.4	NA
Date extracted	-	11/05/2022	11/05/2022	11/05/2022
Date analysed	-	12/05/2022	12/05/2022	12/05/2022
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50	<50
Surrogate o-Terphenyl	%	96	95	89

PAHs in Water - Low Level				
Our Reference		294828-1	294828-2	294828-3
Your Reference	UNITS	MW1	MW5	WDUP1
Date Sampled		05/05/2022	05/05/2022	05/05/2022
Type of sample		Water	Water	Water
Depth		0.2	0.4	NA
Date extracted	-	11/05/2022	11/05/2022	11/05/2022
Date analysed	-	11/05/2022	11/05/2022	11/05/2022
Naphthalene	µg/L	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	82	81	78

HM in water - dissolved				
Our Reference		294828-1	294828-2	294828-3
Your Reference	UNITS	MW1	MW5	WDUP1
Date Sampled		05/05/2022	05/05/2022	05/05/2022
Type of sample		Water	Water	Water
Depth		0.2	0.4	NA
Date prepared	-	06/05/2022	06/05/2022	06/05/2022
Date analysed	-	06/05/2022	06/05/2022	06/05/2022
Arsenic-Dissolved	µg/L	6	4	6
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	1	16	1
Copper-Dissolved	µg/L	1	35	2
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1
Zinc-Dissolved	µg/L	6	26	7

Miscellaneous Inorganics			
Our Reference		294828-1	294828-2
Your Reference	UNITS	MW1	MW5
Date Sampled		05/05/2022	05/05/2022
Type of sample		Water	Water
Depth		0.2	0.4
Date prepared	-	05/05/2022	05/05/2022
Date analysed	-	05/05/2022	05/05/2022
рН	pH Units	7.6	7.4
Electrical Conductivity	µS/cm	380	500

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUAL	TY CONTROL	.: VOCs ii	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			06/05/2022	1	06/05/2022	09/05/2022		06/05/2022	
Date analysed	-			09/05/2022	1	09/05/2022	10/05/2022		09/05/2022	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	102	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	µg/L	1	Org-023	<1	1	<1	<1	0	104	
2,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	106	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	103	
1,1-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	82	
Bromodichloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	100	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	87	
1,2-dibromoethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	106	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromoform	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	[NT]	
Styrene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT	QUALITY CONTROL: VOCs in water							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	1	96	98	2	102	
Surrogate toluene-d8	%		Org-023	98	1	96	98	2	100	
Surrogate 4-BFB	%		Org-023	103	1	105	102	3	101	

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Du	plicate	te Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/05/2022	1	06/05/2022	09/05/2022		06/05/2022		
Date analysed	-			09/05/2022	1	09/05/2022	10/05/2022		09/05/2022		
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	111		
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	111		
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	105		
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	106		
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	114		
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	115		
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	111		
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	98	1	96	98	2	102		
Surrogate toluene-d8	%		Org-023	98	1	96	98	2	100		
Surrogate 4-BFB	%		Org-023	103	1	105	102	3	101		

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	294828-1
Date extracted	-			11/05/2022	[NT]		[NT]	[NT]	11/05/2022	11/05/2022
Date analysed	-			12/05/2022	[NT]		[NT]	[NT]	12/05/2022	12/05/2022
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95	106
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89	98
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	109	107
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95	106
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89	98
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	109	107
Surrogate o-Terphenyl	%		Org-020	92	[NT]	[NT]	[NT]	[NT]	95	95

QUALITY CO	NTROL: PAF	ls in Wate	r - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			11/05/2022	[NT]		[NT]	[NT]	11/05/2022	
Date analysed	-			11/05/2022	[NT]		[NT]	[NT]	11/05/2022	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	82	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	84	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			06/05/2022	[NT]		[NT]	[NT]	06/05/2022	
Date analysed	-			06/05/2022	[NT]		[NT]	[NT]	06/05/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	90	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	109	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	91	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	108	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	

QUALITY CONTROL: Miscellaneous Inorganics						Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			05/05/2022	[NT]	[NT]		[NT]	05/05/2022	
Date analysed	-			05/05/2022	[NT]	[NT]		[NT]	05/05/2022	
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]		[NT]	100	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E34871PT, Ramsgate
Envirolab Reference	294828
Date Sample Received	05/05/2022
Date Instructions Received	05/05/2022
Date Results Expected to be Reported	12/05/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved	Hq	Electrical Conductivity
MW1-0.2	✓	 ✓ 	 ✓ 	 ✓ 	\checkmark	✓	✓
MW5-0.4	\checkmark	1	\checkmark	\checkmark	\checkmark	✓	✓
WDUP1-NA		✓	\checkmark	\checkmark	\checkmark		
TS-W1-NA		\checkmark					
TB-w1-NA		\checkmark					

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

			<u> </u>	<u>E AND</u>	CHAIN O	<u>F CU</u>	<u>ST</u> O	DY F	ORI	N							
<u>TO:</u> ENVIROLAB S 12 ASHLEY S ⁻		PTY LTD	JKE Job Number:		E34871PT]			FRO		k					
CHATSWOOI P: (02) 99106 F: (02) 99106	200	067	Date Results Required:		STANDARD	· · · · · · · · · · · · · · · · · · ·]				R OF 1	15 W	ICKS F			ne	nt
Attention: Ai	leen		Page;		1 OF 1	MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 50 1 Attention: K. TAYLOR											
Location:	RAMSG								6					on Ice			_
Sampler:	нพ					-	-					rea in Reguir		on ice			
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 3L	VOCs	pH / EC	ВТЕХ								
5/05/2022	1	MW1	G1, V, H, PVC	0.2	Water	×	×	×								+	+-
5/05/2022	2	MW5	G1, V, H, PVC	0.4	Water	x	x	×)			-				+-
5/05/2022	3	WDUP1	G1, V, H, PVC	NA	Water	x											T
5/05/2022	्भ	TS-W1	V	NA	Water				x .								Γ
5/05/2022	5	TB-W1	v	NA	Water				x	•							
د					, 						-						
			Envirolab Services <u>12 Ashley St</u> atewood NSW 2067														
		nh No:	828														
		ate Received: <u>Ime Received:</u>	5/5/22														
		eceived by: emp Cool Am	bient 12°C			i i										:	
		acurity: Intaol	Broken/None								_						
			r							L		_	<u>.</u>		. 		
							_	_			_						
							-,	· , 									
~																	
All	analysis I		equired): : (2000) Detection Lin	nits Pleas		Sampi G1 - 5 V - BT PVC - 1	eomL EX Via	Ambei I I	Glass H - HN	103 W	e se	211- VC	Ambr	sr=Glaz	is Boli		L
elinquished B	iy: HW		Date: 5/5/22	<u> </u>		Time:		Za,	l	Receiv	ed By V/V				Date: 5/5	12	 ı

SAMPLE AND CHAIN OF CUSTODY FORM

.*

.

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²¹ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²². The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²¹ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²² Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. <u>Matrix Spikes</u>

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

```
\frac{(D1 - D2) \times 100}{(D1 + D2)/2}
```


Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDUP1 (primary sample BH1 0.15-0.25m)	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs	
Intra-laboratory duplicate (water)	WDUP1 (primary sample MW1)	Approximately 50% of primary samples	Heavy metals, TRH/BTEX, and PAHs
Trip spike (soil)	TS (2 May 2022)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (soil)	TB (2 May 2022)	One for the investigation to demonstrate adequacy of storage and transport methods	Heavy metals, TRH/BTEX and PAHs
Rinsate (soil SPT)	FR1 (2 May 2022)	One for the investigation to demonstrate adequacy of decontamination methods	Heavy metals, TRH/BTEX and PAHs
Trip spike (water)	TS1 (5 May 2022)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (water)	TB1 (5 May 2022)	One for the investigation to demonstrate adequacy of storage and transport methods	BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 and Table Q2 inclusive) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

• All results less than PQL.

B. DATA EVALUATION

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies. Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC, with the exception of the groundwater anthracene PQL which was 10 times greater than the ecological SAC and the vinyl chloride PQL which was 3.3 times greater than the adopted recreational SAC and 33.3 times greater than the health-based SAC. In light of the PAH and VOC concentrations reported for soil and groundwater, JKE is of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several PAH compounds in SDUP1/BH1 (0.15-0.25m); and
- An elevated RPD was reported for copper in WDUP1/MW1.

Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Trip Blanks

During the investigation, one soil trip blank and one water trip blank was placed in the esky during sampling and transported back to the laboratory.

The soil trip blank analysis results were all less than the PQLs with the exception of chromium, lead and zinc, with reported concentrations of between 2mg/kg and 3mg/kg. Low level metals concentrations are typical in washed sand which is utilised as blank material. In JKE's experience, the concentrations reported were consistent with background concentrations in a sand matrix and were not indicative of cross-contamination. On this basis, cross contamination between samples that may have significance for data validity did not occur.

The water field blank results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Rinsates

Trace concentrations of TRHs and copper were detected in the rinsate sample. The detectable concentration of light fraction TRH is most likely attributed to trihalomthanes. These compounds are breakdown products from the chlorination process and are common in potable water at the concentration reported (the Australian drinking water guideline for total trihalomethanes is $250\mu g/L$). Similarly low level metals concentrations (namely copper) are also typical in potable water which is utilised in the rinsing process.

Trip Spikes

The soil trip spike results ranged from 103% to 104% and indicated that field preservation methods were appropriate.

The water trip spike results ranged from 73% to 99% and indicated that field preservation methods were appropriate.

4. Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation. A review of the laboratory QA/QC data identified the following minor non-conformances:

Envirolab report 294592

- The laboratory RPD acceptance criteria were exceeded for 294592-1 for copper and lead. Therefore, a triplicate result was issued as laboratory sample number 294592-30; and
- The laboratory RPD acceptance criteria was exceeded for 294592-23 for lead. Therefore, a triplicate result was issued as laboratory sample number 294592-31.

Envirolab report 294592-A

The laboratory notes indicated *Samples received in good order: Holding time exceedance*. No specific details relating to which samples/analysis were out of holding time and therefore this/these non-conformances are not considered to have adversely impacted the report findings.

C. DATA QUALITY SUMMARY

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These nonconformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. However, given the low contaminant concentrations reported, the site history and the surrounding land uses, this is not considered to alter the conclusions of the investigation. It is noted that a DSI has been recommended and this is to include further characterisation of the groundwater.

Appendix H: Field Work Documents

Client:		Good Time Holdings NSW					E348	71PT	
Project:	Proposed	Proposed Mixed Use Development Coles Ramsgate, 277 Grand Parade, RAMSGATE, NSW					mw1		
Location:	Coles Rar						Depth (m):		
WELL FINISH								<i>V</i>	
Gatic Co			Standpi	0e			Other (descr	ibe)	
Method:		102 No	Peristatlic pump	<u>`</u>	SWL – Be	fore:	1.72		
Date: 5/5 Undertaken By: HW		elel	1.2. Time – E				7:55a		
				************	Removed:	~3.11			
Pump Program No:					PID (ppm):		0.2		
PURGING / SAMPLI	NG MEASUR	EMENTS					- Cip		
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)	
4	1.72	0.5	dear	21.8	2.6	277.1	7.29	172.9	
8	1.72	0.8	ζ <i>έ</i>	21.7	1.2	268.7	7.38	135.9	
12	1.72	1.0	Č i	21.6	1.0	268.7	7.35	131.5	
16	1.72	1.3	11	21.6	0.9	265.9	7.33	127.0	
20	1.72	1.5	Č I	21.6	0.8	263.6	7.32	122.4	
24	1.72	1.8	()	21.6	0.7	261.5	7.30	116.1	
30	1.72	2.1	17	21.6	0.7	261.0	7.29	115.2	
34	1.72	2.5	f i.	21.6	0.7	260.7	7.29	113.9	
38	1.72	2.8	<i>[</i> 1	21.7	0.6	259.5	7,30	110.6	
42	1.72	3.1		21.7	1,0	25815	7.30	198.8	
			Stort sampline						
******								1	
							••••••	+	
*********************								1	
	-								
*************************					**********				
						·····	***********		
	-								
	-								
	-		***************************************						
	-								
************************	-								
NO LMAPZ OK	served in	bariler.	H (YES / NO)) Sheen (Y Fost form derete nber, & x BTEX vials, 22	well 10	charge			l	
′SI used:			Field 6	A: WOU	19	17			
ested By: Katrina Ta	ivlor NW		Remarks:						
Date Tested: 5/5	-/22		- Steady state condition		unite diff-	onco in conde	ntivity lace +-	nn 100/	
hecked By:	ý		 difference in the pH less than 0.2 units, difference in conductivity less than 10% 10% and SWL stable/not in drawdown 						

JKEnvironments Job No.: E34871PT Client: Good Time Holdings NSW Job No.: E34871PT Project: Proposed Mixed Use Development Well No.: MW 5

Location:	Coles Rai	isgate, 27	7 Grand Parade, RAMS	o, (1 E, 11011		Depth (m):	1	6.0
WELL FINISH								
Gatic C			Standp	ipe			Other (descr	ibe)
VELL PURGE DET	AILS:		4			_	<u> </u>	
lethod:			w perstatlic pum	ρ	SWL – Be		1.93	
Date: 5/5/2			22	Time – Before:		9:21am		
Undertaken By: //W					Total Vol	Removed:	N3.11	
Pump Program No:					PID (ppm)	:	0.4	
PURGING / SAMPL		EMENTS						
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pH	Eh (mV
5	1.93	05	clear	21.4	2.7	389.0	7.38	114.3
9	1.93	0.7		21.3	2.2	391.4	739	109.0
<u> </u> 3	1.93	1.0	()	21.3	1.8	395.7	7.37	104.3
17	1.93	1.3	11	21.3	1.0	398.0	7.34	101.7
21	1.93	1.5	٤٩	21.4	0.7	399.8	7.31	97.6
25	1.93	1.8	(1	21.4	0.5	400.6	7.29	94.8
29	1.93	2.1	/ 1	21.5	0.5	401.0	7.28	93.8
33	1.93	2.5	7 (21.6	0:5	403.2	7.27	92.5
37	1.93	2.8		21.8	0.4	405.9	7.27	91.0
41	1.93	3.1	11	22.0	0.4	40718	7.26	89.5
**********************			start sampling		····	<u>1970</u>		
			·····					1
								1
								-
***************************************								1

•••••••								
								1
NO LAPL des	eved in b	aiter.	SH (YES / NO)) Sheen (moderate to high nber, f x BTEX vials,	recharge	dantg	sampling .	/	plastic
ested By: Katrina T	aylor Hu		Remarks:					
ate Tested:			- Steady state condition					
			- difference in the pH			rence in condu	uctivity less the	an 10%
hecked By: K	5.22 .		10% and SWL stable/	not in drawdo	wn			

Location:	Proposed Mixed Use Coles Ramsgate, 27	e Development	gs NSW			Job No.:			E34871PT	
	Coles Ramsgate, 27	se Development			v	Well No.:			MWI	
WELL FINIS		Coles Ramsgate, 277 Grand Parade, RAMSGATE, NSW				Depth (m):			bio	
1	HDETAILS									
			54 (23)					ĩ		
WELL DEVE	Gatic C	over 🔽	Standpip				Other (de	scribe) L		
Method:		Development	DAMO	SWL - Bei	fore (m):			1.	72	
Date:		2/5/22							20pm	
Undertaken I	By:	HW		SWL - Aft	er (m):		1.73			
Total Vol. Re	moved:	~606		Time - Aft	er:			3:4	47pm	
PID Reading	(ppm):	0.5				ALCORDONA				
Comments:	ENT MEASUREMEN	ITC								
	ENT MEASUREMEN	T	1	DO	E			_	1	
50804	(L)	Temp (°C)		ng/L)	(µS/c		р	H	Eh (mV)	
	2	23.0	5	is l	372	.6	6.	10	49.9	
	4	23.1	3.	5	366	.0	6.7	1	98.1	
	6	23.1	1.5	9	344		6.7	2	95.2	
	8	23.1	0.		319		6.7		41.6	
	0	23,1	0.		301.		6.7		38.9	
	2	23.1	0.		291.		6.7	**********	36.5	
	4	23.1	0.		215				2:25	
16	******************************	23.1	0.	2	281		6.8		33.2	
		23.1	3.	***************	272	T	6.6		3.5.9	
20		23.1 23.1	1.6		272		6.7		32.7	
29		23.1	01		270	******	6.7.		30.2	
26		23.1	0.9	************	268.		6.7		29.2	
28		23.1	0:		264		6.7		27.7	
30		23.1	0.		263.		6.7.		24.6	
32		23.1	01				6.77		21.1	
34		23.1	3.		261.	2	6.70		21.8	
36		23.1	2.	2-205-2050000000000	265.		6.71		20.8	
38		23.1	1.5	**************	265.		6.73		19.5	
40		23.1	1.1		265		6.7.		183	
42		23.1	Di		265.	Sector Sector Sector	6.7		17.5	
50		23.1	0:	3	263		6.7.		15.5	
60		2311 V NAPL/PSH (YES)	0.		262	>	6.7	5	12.9	

•

1.13

Client: 0	Good Time Holdir	ngs NSW		J	lob No.:	E34871PT		
Project: F	Proposed Mixed U	Jse Development		v	Vell No.:	MW.5		
ocation:	Coles Ramsgate,	277 Grand Parade, RA	MSGATE, NSV	v c	Depth (m):		6.0	
NELL FINISH	DETAILS							
		1						
	Gatio		Standpipe		Other (describe)		
Method:	OPMENTDETA	1 2 2	(WL – Before (m):		1.9	12	
Date:	*****	2/5/22	MANGHING TIMMAG				******	
Undertaken E	۹	HW		WL – After (m):		*****	4:00pm 1:93	
Total Vol. Rei		~604		ime – After:			4 on	
PID Reading		0	*********		******	7.4	YM	
Comments:	(PP)							
DEVELOPME	NT MEASUREM	ENTS						
Volum	e Removed	Temp (°C)	DC			рН	Eh (mV)	
	<u>(L)</u>		(mg/			0.45		
******	TI.	2115	9.0		·····		13.1	
	<u>7</u> /	21.5	1.3	*******************************		·51 53	7:5	
	6 8	21.6	0.5				3.3	
	0	21.6	0:4			54	-0.1	
<u>/</u>	********************	21.6	0.3	402		55	-4.1	
	*********************			402		6	-6:1 -8:1	
		21.6	0.3	401:		56	-9.9	
		21.6	0.3	40/- 40/	*************************	57 57		
			115	401		57	-12.0	
20		21.6 21.6	05	401		s / 57	-10.1	
25	<u></u>	21.6	0.3	401		57	-1210	
28		21.6	0.3	407		7	-13.9	
30		21.6	0.2	402.		57	-15:4	
34		24.6	0.2	401.		\$7	-16.8	
40		21.6	0.2	***************************************	******************************	57	-17.7	
43		21.6	0.5	401.	4 6.	56	-18.8	
46		21.6	0.2	400		-6	-20.0	
SD		21.6	0.2	401.			-21.7	
55		21.6	0.2	400		55	-22.5	
60	*****************	21.6	0.2	400	**********************	<u>۲</u> ۲	-22.8	
		<i>E</i> 1'.Q				8		
		7	1				1	
Comments:O	dours (YES / (NO), NAPL/PSH (YES	S / (NO),)Shee	n (YES //NO), Stea	dy State Achieve	d (YES)	NO)	
Sillead	~		\cup	\smile		\smile		
/SI Used:	5							
Tested By:		HW Remai						
			dy state condition rence in the pH	ons less than 0.2 units, c	difference in the o	onductiveit	less than 10%	
Date Tested:	2		VL stable/not in			encourroit)	, 1966 that 1076	
		1 T T	um 3 monitorir	a wall valumaa pura	od uploss well p	rand until it	tic offoctively day	
N	By: - Minimum 3 monitoring well volumes purged, unless well purged until it is effectively dr							

 $\left| \mathbf{x} \right|$

JKEnvironments

WATER QUALITY METER CALIBRATION FORM

Client: Good Time H	loldings NSW				
Project: Proposed M	ixed Use Development				
Location: Coles Ramsg	ate, 277 Grand Parade, RAMSGATE, NSW				
Job Number: E34871PT					
	DISSOLVED OXYGEN				
Make: Y31	Model: pofessional plus				
Date of calibration: 2/5/22	Name of Calibrator: HW				
Span value: 70% to 130%					
Measured value: 104%					
Measured reading Acceptable (Yes) No):					
	рН				
Make: YSI	Model: professional plus				
Date of calibration: 2/2/22	Name of Calibrator: #/La)				
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 11/22 Lot No: 373/35				
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 04/23 Lot No: 20832				
Measured reading of Buffer 1: 6.00					
Measured reading of Buffer 2: 6.66	4.20				
Slope:	Measured reading Acceptable (ves No):				
	EC				
Make: YSI	Model: Professional plus				
Date: 2/5/22 Name of Cali	brator: Hw Temperature: 20,7 °C				
Calibration solution: Conchepyity Standard	Expiry date: 11/22 Lot No: 37362-3				
Theoretical conductivity at temperature (see solut	ion container): /305 µS/cm				
Measured conductivity: 12-92 µS/cm	Measured reading Acceptable (Yes/No):				
	REDOX				
Make: YSI	Model: professional plus				
Date of calibration: 2/5/22	Name of Calibrator: HW				
Calibration solution: ORP Test solution	Expiry date: 11/26 Lot No: 722.1				
Theoretical redox value: 240n					
Measured redox reading: 239.8 mV	Measured reading Acceptable (Yes/No):				

191.0

JKEnvironments

WATER QUALITY METER CALIBRATION FORM

Client: Good Time H	oldings NSW					
Project: Proposed Mix	t: Proposed Mixed Use Development					
Coles Ramsgate, 277 Grand Parade, RAMSGATE, NSW						
Job Number: E34871PT						
	DISSOLVED OXYGEN					
Make: YSL	Model: Massinal dus					
Date of calibration: 5/5/22	Name of Calibrator: HL					
Span value: 70% to 130%						
Measured value: 96%						
Measured reading Acceptable (Ves/No):						
	рН					
Make: YSI	Model: Professional plus					
Date of calibration: 5/5/2	Name of Calibrator: ///					
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 11/20	Lot No: 373/35				
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 04/23					
Measured reading of Buffer 1: 7,96						
Measured reading of Buffer 2: 5.15		3				
Slope:	Measured reading Acc	ceptable (Yes/No):				
	EC					
Make: VST	Model: Profession	al plus				
Date: 5/5/22 Name of Calib	orator: HW	Temperature: />,& °C				
Calibration solution: Conductivity stondard	Expiry date: 11/22	Lot No: 375623				
Theoretical conductivity at temperature (see solut		/305 µS/cm				
Measured conductivity: 1292 µS/cm	Measured reading Acc	ceptable (res/No):				
	REDOX					
Make: YSI	Model: Professional plus					
Date of calibration: 5/5/22	Name of Calibrator:	Hh)				
Calibration solution: ORP Test Solution	Expiry date: 11/26	Lot No: 7221				
Theoretical redox value: 240m						
Measured redox reading: 19/10 mV	Measured reading Acceptable (Yes/No):					

JKEnvironments

Client:	Good Time Holdings NSW					
Project:	Proposed Mixed Use Development					
Location:	Coles Ramsgate, 277 Grar	d Parade, RAMSGATE, NSW				
Job Number:	E34871PT					
	0	PID				
			Date of last factory			
Make: Honey Woll	Model: Mini RAE	Unit: Green	calibration:			
Date of calibration: 29	1/5/22	Name of Calibrator: HW				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm				
Measured reading: /c	0.2 ppm	Error in measured reading:	± 0.2 ppm			
Measured reading Acceptab	ble (Yes/No):					
		PID				
			Date of last factory			
Make: Honorwall	Model: Mini RAE	Unit: Green	calibration:			
Date of calibration: $q/$	5/22	Name of Calibrator: HW				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm				
Measured reading: 100	-3 ppm	Error in measured reading:	± 0.3 ppm			
Measured reading Acceptab	le (Yes/No):					
		PID				
		-	Date of last factory			
Make:	Model:	Unit:	calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm			
Measured reading:	ppm	Error in measured reading:	± ppm			
Measured reading Acceptab						
		PID				
			Date of last factory			
Make:	Model:	Unit:	calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm				
Measured reading:	ppm	Error in measured reading: ± ppm				
Measured reading Acceptab						
		PID				
			Date of last factory			
Make:	Model:	Unit:	calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm			
Measured reading:	ppm	Error in measured reading: ± ppm				
Measured reading Acceptab	le (Yes/No):					

Appendix I: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

